BecTHHK

PoccuiicKO-ApMSIHCKOTO
(C1aBAHCKOI0) YHUBEPCHUTETA

No?2

OU3NKO-MATEMATHYECKHE
N ECTECTBEHHBIE HAYKHA

ISSN 1829-0450

EPEBAH 2015

POCCHVICKO-APMSITHCKHM (CJIABSSHCKHWH)
YHUBEPCHUTET

BECTHHUK

POCCUHCKO-APMSHCKOI'O (CJABSAHCKOI'O)
YHUBEPCUTETA

CEPUA:
OU3NKO-MATEMATHYECKHUE
N ECTECTBEHHBIE HAYKH

NznareanctBo PAY
Epesan 2015

2U8-0NPUUYUL (ULUYALUYUL)
UUULUULUL

LLCUELED

2U8-NRUUYUL (ULUMALUYUL)
ZUUULUULULE

Utrru

drePulUUECGUUSPrIUYUL
B4 FLUYUL @SNk E3NRLLEN

Ne 2

2}2 Zpunnwpwlsnipjntl
Bpliwt 2015

ITeuaraetcs o pemeHuto YueHoro copeta PAY

Becthuk PAY, Ne 2. — Ep.: U3a-8o PAY, 2015. — 107 c.

Penmaknmnonnast KOJUIerus:

['maBHBIIH penakTop Ambapyyman C.A.
3aM. TJIaBHOIO peJakTopa Asemucsn I11.C.
OTBeTCTBEHHBIE CEKpETapu Teoneyan I'I"., lllazunsn P.C.

UneHsl peIKOJUIETUH:

O.B. becos, B.U. Bypenxos, I'.P. Bapoanemsan, M.A. /lasmsan, I'I. /lanaey-

JUSIH, HJ] 3acnasckun, [I.I. Kazapan, 3O.M. Kasapsn,

I'A. Kapanemsn, B.U. Kownonnes, I'b. Mapanoxcan, P.JI. Menxonsn,
B.H. Myponey, b.C. Hazanemsn, C.I'. Ilempocsn, A.A. Capkucan,

I'.3. Capxucan, A.I'. Cepeees,

KypHnain BXoquT B TiepeydeHb EPUOANIECKUX H3IaHnH, 3aperucTpupoBaHHbix BAK PA

Poccuiicko-Apmsackuit (CnaBsiHckuid) yauBepeutet, 2015 1.

ISBN 1829-0450
© UzparensctBo PAY, 2015

Becmnux PAY Ne 2, 2015, 5-13 5

MATEMATUKA U UTHOOPMATHUKA

YK 539.3 Mocrymwma 11.09.2015r.
K 3AJIAUYE INIAHAPHBIX KOJJEBAHUM IVIACTUHKH

C.A. AmOapuymsn, M.B. Benyoexsin

HUncmumym mexanuxu HAH PA
e-mail: mechins@sci.am

AHHOTANUA

[Ipennaraercst BapuaHT YTOYHEHUS 3a]ad IUTAaHAPHBIX KOJNEOAHUH yII-
pyroii minacTuHKU. [lonepedHble HampsKEHUS MPEACTABIEHBI B BUIC
KBaZIpaTUYHON ()YHKIMM TI0 TONIIMHE IacTHHKH. Mcenenyrores ag-
(beKTBl YTOYHEHHS B 3aBUMOCTH OT YCIIOBHH 3aKpEIUICHHUS KPOMOK
IUIACTUHKH.

KnroueBble cinoBa: ynpyras IJIacTUHKA, MPOJOJIbHAs BOJIHA, 3aKpell-
JICHHBIU Kpail.

HccnenoBanre npocTpaHCTBEHHBIX (TPEXMEPHBIX) 3a4a4 IJIACTUH CBSA3aHO C
OonpmmMu TpynHocTsmu [1]. Hanbonee n3BecTHBI YeThIpe METOIa CBEJICHHS TPEX-
MEpHBIX 337124 IJIaCTHH (M 000JI0YeK) K ABYMEPHBIM: a) METOA ONPEAEICHUS HIIH
MeToJ TuroTe3 [2], 6) acuMnToTudeckuii MeTox [3, 4], B) BapHaIMOHHBIA METO/T |5,
6], r) oneparopHbIii MeTO [7].

OCHOBHBIM HEJIOCTATKOM METO/Ia TMIIOTE3 IIPUHATO CUMTATh HEBO3MOXKHOCTD
MPOJIOJDKEHUS TIPOIlecca YTOUYHEHHS. 3/1ech, Ha YaCTHOM IpUMepe, TTOKa3bIBaeTCs,
YTO MPOLECC YTOUHEHHS (TIpoLece MOTyYeHHs CIASAYIOIUX NMPHONKEHNI) BO3MO-
xeH. OHaKo, PH 3TOM, HEOOXOJMMO OJTHOBPEMEHHO HCIIONIb30BaTh KaK MPOIIEIY-
Py yBEIHMUYECHHS KOJMYECTBA WICHOB pa3jiokeHHs [8] MO TOJIUHHON KoopauHarte,
TaK ¥ NPOLEAYpPY OCEepPEeIHEHUsI YPaBHEHUH JBIKEHHS C UCIIOJB30BAHUEM MOMEH-
TOB O0Jiee BEICOKHX MTOPSIKOB.

B HacTosimieit ctatbe yueT HOpMaJbHBIX 110 TOJIIMHE HANPSDKEHUH YTOUHSET
3ajJjauy TUIaHAPHBIX KOJICOAHWIA, HO HE BIIMSET HA M3TUOHBIC KOJeOaHHS.

1. PaccmaTpuBaercsi 3aja4ya KoJ1e0aHU NPSAMOYroJbLHON NJIACTMHKH,

KOTOpad B HpHMOYFOJ'ILHOf/i I[eKapTOBOﬁ CUCTCMC KOOpAMWHAT 3aHHUMACT 06J'IaCTI:>Z
0<x<a, 0<y<b, —h<z<h.

6 K 3a0aue nnanapruvix konebanuil RAAGCMUHKU

HpOCTpaHCTBCHHHC YPaBHCHMS IBHKCHUS IIITACTUHKHU UMCIOT BUJI.

0G.. o’u. .
1] i
ox, ot

JIuieBklie MOBCPXHOCTH IJIACTUHKHA CBO6OI[HI)I
0y =0 npu z==h (1.2)

B 3akone I'yka, B orsimunie ot Teopun Kupxroda, HanpsikeHue O, He Ipe-
HeOperaeTcs, a IPUHUMACTCS B BUIE!

2

VA
O = 1—F o, (X, y.1)=f(2)e (1.3)

Hanpsxenus oy,, 0,5, B 3akone ['yka npeneOperarorcs Uit IpocToThl. Moxk-

HO JUIS HUX TaKXXE HCIIOJIb30BaTh HEKOTOpBIC MpeicTaBicHus [2]. 3mech OTHOCH-
TENBHO Oy O3, OCTAHABIMBAEMCS HA ypoBHE Teopuu Kupxroda, Tak Kak ux yrou-

HEHUS TEPBOTO U BBICOKHX IMOPSIIKOB, KaK M3BECTHO, [2, 9] He Oyaer BiausATh Ha
MTaHAPHBIC KOJICOAHMS.

C nomomsio 3akoHa ['yka u gomymenus (1.3) i1 OCHOBHBIX HamlpshKeHUN

UMEEM.
Vv
all=m(gn+v$22)+ﬂf(z)¢3
E v
Oy —m(gzz +v<914)+E f(z)ep, (1.4)
o - E . 1ok d
24y BT ox; Ox,

Jnst mepeMenieHuii, kak u B reopun Kupxroda, npuHuMaercs
ow ow
Uy=U-2—,U,=V—-7Z—, U, =W, (1.5)
OX oy

rac q)yHKI_[I/II/I u,V,W HEC 3aBHUCAT OT KOOpPAWHATHI Z.

B xnaccudeckoii Teopun ypaBHeHHS (1.1) ocepemHstoTcss HHTETPUPOBAHUEM
[0 TOJIIMHE TUIACTUHKK uis | =1,2,3 ¥ UHTErpupOBaHUEM II0 TOJIIUHE IIOCIE

C.A. Ambapyyman, M.B. Benybexsan 7

yMHOKeHHsI Ha Z Juist | =1,2 (MOMEHTHI IIEPBOTO MOPSIKA). 31eCh, B JOMOJHEHHE

K KJIACCHYECKON TEOpWH, MPOIECC OCpPEemHEeHHs Mpopoinkaercs. YpaBaenue (1.1)
npu | =3 Takke OCpeIHAETCS YMHOKEHMEM Ha Z, 3ateM ypasHenus (1.1) mpu

; 2
1 =1,2 ymHOXarOTCs HA Z° M CHOBA OCPEIHSIOTCS (MOMEHTBI BTOPOro nopsijka). B

PE3YyNbTATC IMOJYYarOTCs CICAYIOINEC YPABHCHUA B YCUIMAX U MOMCHTAX:

o, s _, ou a8 _, 0

oz % ~— 1.6
x o e oy o
2
Ny Ny OW
M, OH _\ o, 6M2+8_F1_N2:0
ox oy oy X
N, Ny _dh
OX oy 3
3 A2 3 72
%Jr@_zNM:th 6[21, 8T12+8SZ_2N21:ﬂ5_\2/_ (1.8)
ox oy 3 a* oy ox 3 o

B otnnume oT kimaccudeckoi Teopuu, ypaBHeHus (1.7) ompenemnstoTr mM3ruo-
HbIe KOJIe0aHUs, KOTOPBIE 37€Ch HE pacCMaTpPUBAIOTCS. Y CHIIUS U MOMEHTHI BTOPO-
ro nopsiaka B ypaBHenusx (1.6) u (1.8) onpenenstorces ¢ yuerom (1.2), (1.4), (1.5)
CIeIyIoNUM 00pazoM:

Bropoe u tperhe ypaBHeHus (1.8) HallOMHHAIOT [OTIOJIHUTENBHBIE YpaB-
HEHUS IBYKESHUSI MUKPOTIOJISIPHOW TEOPUH YIIPYTOCTH.

VYpasuenus (1.7) onpenensiroT u3ruOHbIe KoJieOaHUs, KOTOPBIC 3/1eCh HE pac-
CMaTPHUBAIOTCS. Y CHIIAS ¥ MOMEHTHI BTOPOTO TIOpsinka B ypaBHeHMX (1.6) u (1.8),
B OTJIMYWE OT KJIACCHYECKOH TeopuH, ompenensiores ¢ yuetom (1.2), (1.4), (1.5)
CIICAYIOIIUM 00pa3oM:

T1:C a_u+vg +Lh¢31S:];VC a_u+@ :
ox oy) 3(1-v) 2 oy Ox

T,=C N M (03,C=—2Ehz (1.9)
o ox) 3(1-v) 1-v

8 K 3a0aue nnanapruvix konebanuil RAAGCMUHKU

h 3

ou _ov) 4vh
T,=|2°0,d2=D| —+V— [+ ——
2 Ih o (ax 8yJ 15(1-v)"™

h 3
ov ou 4vh
T,=|7%,d2=D| —+V— [+ ——— 1.10
* Ih oz (8y 8x] 15(1-v)"° (19
_ 3
82:1 vD 6u+vg D= 2Eh
2 loy ox 3(1-v?)

C yuerom (1.10) momentsr N;; 1 N,; ompenenstorcst U3 BToporo u TpeTbe-

ro ypaBHeHUsI cucTeMbl (1.8).

3 2
__Eh){Au+6’£(au @j+4vea¢3_ 1 au}

__|_ RN
"o6(1+v ox\ox oy) 5E ox CPot’
3 2
N, = En Av+6?£ 6_u+@ +4v08(p3_i28\2/ (1.12)
6(1+V) oylox oy) 5E oy CZot
c2_ E 6?—1+V

“2p(1+v) T 1-v

IToxcranoska (1.10) B cuctemy (1.6) u (1.11) B mepBoe ypaBHEHHE CUCTEMBI

(1.8) mpuBOAMT K CHUCTEME YpaBHEHHWH OTHOCHUTEJIBHO TPEX HCKOMBIX (GyHKIMHA
uv,e,:

2

Aurgl U, V), WOOp, 1 U
ox{ox oy) 3E ox CZot

2

gl [B) 200010
oylox oy) 3E oy C7 ot

IHoncranoska (1.10) B cucremy (1.6) u (1.11) B mepBoe ypaBHEHHE CHCTEMBI

(1.8) mpuBOAUT K CUCTEME YpaBHEHHWH OTHOCHTEILHO TpPEX HCKOMBIX (DYHKIMI
u,Vv, o,

1-Vv?) 52 v(1 2
A o) AV (o ov) (L), 40-v)
X oy E at?lox oy 5E Eh

2. I'panuunbie yeaosus. CornacHo (1.12), B oTiinyue ot Teopun Kupxroda,
Ha KpPOMKax IIaCTUHBI X = const, y= const mis 3amaun MJaHapHBIX KoJIeOaHHI

»,=0 (1.12)

C.A. Ambapyyman, M.B. Benybexsan 9

(00001IEHHOTO TIIIOCKOTO HANPSIKEHHOTO COCTOSIHHSI HEOOXOIUMO UMETh TPH Tpa-
HUYHBIX YCJIOBUs). B ciydae 3akperuieHHONW KPOMKU TUTACTUHKU JOOABOYHOE YCIIO-
BHUE, €CTECTBEHHO, HYXKHO B35Th B BUJIC:

h

1
I £,02=0, g, = E[ass —V(oy +0,)] : (2.1)

-h
Ycnosue (2.1), ¢ yuetom (1.4), mpencTaBiseTcs CIEIYIOMUM 00pa3oM

4h

?;%-w(n+n)=o. (2.2)
Wcnons3yst Beipaxenust st 1, T, u3 (1.9), ycnoBust 3aKpemieHHOro Kpas

mpu X = CONSt mpuBoasTCS K BUAY:

u=0.v=0. VE%—§(1+V)(1—2V)(/)3:O. (2.3)

YcinoBus, COOTBETCTBYIONIHE YCIOBHSM CBOOOJHOTO OMHpaHUs (YCIOBHUAM
HaBbe B TpexmepHoIi 3a1a4ue), OUSBHIHO, OYAYT:

T,=0,v=0,T, =0 npu x = const. (2.4)

He tpyano nokasatp, 4to ycioBus (2.4) NpuBOISTCS K BUILY.

ou
—=0,v=0, ¢, =0. 25
X s (2.5)
AmnanorudHo, mpu X = CONSt ycnoBust CKONB3SIIET0 KOHTAKTA IIPUMYT BUJT
h
U=0,8=0, [£,dz=0 (2.6)
-h
U
u:O,@zo,vE a_u+@ —g(l+v)(1—2v)go3:0 2.7)
X x oy) 3

YcnoBus cBOOOIHOTO Kpas:

T,=0,5S=0,T,=0 (2.8)

HUIIn

10 K 3a0aue nnanapruvix konebanuil RAAGCMUHKU

x oy oy o

B wactHOM cirydae omHOMepHBIX KojeOaHuil cucrema ypaBaenuit (1.12), mo-

CJie HEKOTOPBIX MPeoOpa30BaHuUi, IPUBOIUTCS K BULY (8/ oy = 0)

2 2 2 2 2 2
Zl:+ﬂ8go3_iau 8g03+]/_ 4 0V 10V
X

x Clat o Tl e clat

~2v(1+v) , 15(1-v)
p= e T T v

(2.10)

YpaBHEHUA 1S IONEPEYHOTO MEPEMENIEHUST V OTAENAI0TCS. B BhlEenpuBe-

JICHHBIX BapUaHTaX TPaHUYHBIX YCIIOBHU MEpeMelleHre V TaKXKe OTHeNsIeTCs. Y pas-
uenne (2.10) TakKe MOKa3bIBAET, YTO, €CAM Ha KpoMKax ruracTuaku X = 0,a 3amaHer

b0 ycimoBus cBoOOHOTO ommpanus (2.5), mubo cBobomHOTO Kpas (2.9), cnemyer
@, =0. T.e. wist TakuX 33129 IPEIIaracMoe YTOYHCHNE HE HMECT BIHSHUS.

[TycTh, Ha KpasiX 3a/laHbl CASAYIOMNE YCIOBUS (KOHCOJIbHAS IJIACTUHKA)

u=0, VEa—u—g(l+V)(l—2v)go3:O npu x =0
ox 3
(2.11)
a—u:O 0, =0 npu x=a
ox 0

3neck npu X =0 ecth ycnoBus 3akperieHHoro kpas (2.3), a nmpy X=a —
cBoOoHOTO Kpas (2.9).
OOmiee pemieHne rapMOHMYECKHX KosiebaHuil ypaBHeHuid (2.10) oTHOCH-
TeabHO QYHKIMHA U,V OyIeT:
Brlao® y2)"

u= Alsin£x+ Blcosﬂx——L———J

Y .4 iwt
cos=x—B,sin=] e
C, C, h\lcZ n [AZ 2

h h 2.12)

?, :[Azsin%x+ B, cos%xj e™,

rae A.B,, A, B,— npousBosibHbIC TOCTOSIHHBIE.

Iloncranoska (2.12) B rpannunbie yciaoBus (2.11) npuBoaUT K cucTeMe Of-
HOPOJHBIX aNreOpandecKuX ypaBHEHHH OTHOCHTENBHO INPOHM3BOJIBHBIX ITOCTOSH-

C.A. Ambapyyman, M.B. Benybexsan 11

HBIX. YCIIOBHE PaBEHCTBA HYNIO JETEPMHHAHTA 3TOH CHCTEMBI JaeT CIIEAyIoIIee
JIUCTIEPCUOHHOE YpaBHEHUE!

OtgQ = {tgd, (2.13)
rae
_wa . _¢a
Q_Cz’ £=2=. (2.14)

B kmaccuueckoil Teopuu OJHOMEPHBIC IUTAHAPHBIC KOJICOAHWS IJIACTUHKU
MIPUBOJIAT K PE3YIbTaTy:
(2n-1)
2

cosQ=0 wu Q=

(2.15)

OdeBHIHO, YaCTOTHI, onpezensieMbie U3 (2.13), OyayT CYIIECTBEHHO OTIIH-
yaTbes oT (2.15). B wactHoCTH, (2.13) MMeeT Takke cleayoliee peleHue:

Q=¢ wm C3=% (2.16)

3. Paznenenne BoaH. Mcmone3yst nmpeoOpazoBanue Jlame muis mumockoit 3a-
nmaun [11]

u—a_¢+a_l’[/ V_a_(l)_a_l// (31)

X oy oy ox
cuctemy ypaBHeHHi (1.12) MOXKXHO IPUBECTH K BULY:

1 o \P_iazl/l

Ao+ B =2 0P Ay LV
o+ P, CZ ot CcZ at?
2 (32)
o L0 3y) A1)
[a —_ =
™ 10 T e P

Otcroma ciemyer, YTO ypaBHEHHE ISl TUIAHAPHBIX CABHTOBBIX BOJH OTHeE-
nsercs. IlogcraHoBka omeparopa ajist ¢ u3 nepBoro ypaBHeHus (3.1) B Tperwe

IIPUBOJIUT K Pa3ENbHOMY YPABHEHHUIO IS (D,

2

Ao, +%¢3 —0 (3.3)

12 K 3a0aue nnanapruvix konebanuil RAAGCMUHKU

W3 (3.1) BumHO, 4YTO, Kak ¥ B OJMHOMEPHOW 3ajave, €ClId Ha BCEX KPOMKaX
IUTaCTUHBI UMeeTcs ycaosue @, =0, pesynbrarsl pereHns 3aaa4d OyayT COBIAIATh

C KJIaCCHYCCKHUMMU.

JINTEPATYPA
1. ITuxyne B.B. Mexanunka obonouek. Bnagusoctok. Uzn-so JIBI'TY, 2005. 524 c.
2. Ambapyymsan C.A. Teoppus aHu30TpONHBIX lacTuH. M.: Hayka, 1987. 360 c.
3. l'oavoensetizep A.JI. Teopus ynpyrux ToHkux obonouek. M.: Hayka, 1976. 512 c.

4. Aghalovyan L.A. Asymptotic Theory of Anisotropic Plates and Shells. World Scientific.
2015. 360 p.

5. Fepouuesckuii B.JI. BapuarmioHHbIE METOIBI IIOCTPOCHUS Mozesel obomouek.- «[Ipukit.
mat. ¥ Mex». 1972, 1. 36, e 5. CC. 788-804.

6. Bexya M.H. O nByX IMyTsAX MOCTPOCHUS HEMPOTHBOPECUHBON TEOPHH YIPYTHUX 000I0YEK
// B xH.: Matepuansl [-oif Bcec. MIKONBI MO TEOPHM M YHCICHHBIM METOJaM pacueTa
o06os04ek M mactud. Tounucu, 1975. CC. 5-50.

7. JIypve A. 1. IIpocTpaHCTBEHHBIE 3a1a4u Teopuu ynpyroctu. M. I'ocrexusaat, 1955. 491 c.

8. Kupakxocsn P.M. Tlpukiasnasi TeOpHsi OPTOTPOIHBIX IUIACTHH NEPEMEHHOH TOJIIIMHBI,
YUUTBIBAIOIIAs BIMSHUE AedopMarii monepedHsix casuros. Ep., U3n-so «I'mTyTioH»
HAH PA, 2000. 122 c.

9. Reddy J.N. Mechanics of Laminated Composite Plates and Shells. Theory and ana-
liyses.-2" ed. — Boca Ration.CRC Press. LLC. 2004. 831 p.

10. Ambapyyman C.A., benybexsan M.B. IlpuknagHas MEKPOTIOISApHAs TEOPHs YIPYTruX 000-
nouek. Ep., M3n-Bo «T'urytror» HAH PA, 2010. 136 c.

C.A. Ambapyyman, M.B. Benybexsan

ON THE PROBLEM OF A PLATE PLANAR VIBRATION
S. Ambartsumian, M. Belubekyan
SUMMARY

The variant of the specifying (improving) of the tlastic plate planar vib-
ration problem is suggested. The transversal stresses are prezent in the
form of squpre function along plate thickness. The effects of the speci-
fying are investigated in dependence from the fasten conditions of the
plate dges.

Keywords: elastic plate, longitudinal wave, clumped edge.

UULP NLULUC SUSULNRULECE LYh e
U.U. Zudpwpdmdjui, U. 9. fEmptljjul
uvoenenkhu

UnwowplJws £ wnwdquljub uwjbph yjuwbwp nunwiniduk-
nh huunpptbnh dogpundwt nwppbpuy: Luytwlwb jupnudubpp
ubpujugynid Eu punn uvwh hwunmpjut pwnwlniuught
dnrulghuyh nbupny: Zknwgnugnid k £ogpundws wpnniiwyb-
nnipjniup jupidus uwh Yonbiph wdpugdwt guydwibphg:
Zpitwpwnkp’ wowdquiljui vwy, Epuyiwlub wihp, wipuyg-
Jus bqn:

13

14 Becmnux PAY Ne2, 2015, 14-21

YK 004.056.55 IMocrymuna 24. 09.2015r.

A GENERIC FRAMEWORK FOR SECURE COMPUTATIONS

D. Danoyan', T. Sokhakyan®
'Yerevan State University,Yerevan, Armenia, danoyan@gmail.com

Russian-Armenian (Slavonic) University, Yerevan, Armenia, ti-
gran.sokhakyan@gmail.com

SUMMARY

In this article we present a general purpose secure two party computa-
tion framework offering security against semi-honest threat model. The
framework includes its own language for higher level function descrip-
tion and a compiler translating it into a Boolean circuit. Our compiler
can generate large circuits using smaller computational resources than
similar compilers and it utilizes the presence of multiple CPUs. We use
white-box cryptography based oblivious transfer protocol to avoid ex-
pensive public key operations.

Keywords: Secure function evaluation, secure computation protocols,
Yao’s garbled circuits protocol, white-box cryptography, oblivious
transfer.

1. Introduction

As the world is getting more and more connected in many real world scena-
rios, parties with different and potentially conflicting interests have to interact. Ex-
amples of this are citizens and governments (electronic passport and electronic id),
patients and health insurers or medical institutions (electronic health card, e-health
services), or companies and service providers (cloud computing). In the mentioned
context questions of paramount importance are the architecture and the ability of an
underlying communication system to fulfill varied security and privacyrequirements
of the involved parties.

Protocols for secure computations allow two or more mutually distrustful
parties to communicate and compute some commonly agreed function value on
each other’s input, with privacy and authenticity guarantees. Andrew Yao pointed
out that secure two-party protocols can be constructed for computation of any com-
putable function [1].

D. Danoyan, T. Sokhakyan 15

Yao’s protocol remains one of the most actively studied methods for secure
computations. Although Yao never published a precise protocol, the very first real
world implementation of secure two-party computation (2PC) [2] used Yao’s basic
garbled circuit approach, and it remains the primary paradigm for plenty of 2PC
implementations that have been developed during the past eleven years [3][4][5].

Yao’s protocol has a great practical significance. In many real-world situa-
tions, the inputs to a function may be too valuable or sensitive to share with other
parties. Efficient 2PC algorithms enable a variety of electronic transactions, pre-
viously impossible due to mutual mistrust of participants. Huang et al. explored the
use of secure computation for biometric identification[6] in security applications,
when it is desirable for individual genetic data to be kept private but still checked
against a specified list. The more general case of multiparty computation has al-
ready seen real-world use in computing market clearing prices in Denmark[7]. This
is not so forth the full list of applications: auctions [8], contract signing [9],etc.

2. Background

In this section we briefly introduce the main cryptographic tools we have
used in our framework: garbled circuits, white-box cryptography based oblivious
transfer (OT) protocol and optimization techniques for Yao’s protocol.

2.1. Yao’s garbled circuits protocol

Yao’s garbled circuit protocol[1] allows two mutually distrustful parties hol-
ding inputs x and y to evaluate an arbitrary computable function f(x,y) on their
input values without leaking any side information about their inputs beyond what is
explicitly implied by the function output.

The main idea is that one party (called garbled circuit generator) generates an
“encrypted” version of the Boolean circuit Ccomputing the function f, and the
second party (called garbled circuit evaluator) obliviously computes the garbled
circuit. Note that reverse engineering techniques are not applicable to garbled cir-
cuit, thus the evaluator does not learn any intermediate value.

Suppose the generator has a Boolean circuit C with 2 fan-in gates computing
the function f. At the first step the generator fixes some integer k and assigns two
random looking bit strings w® and w to each wire of circuit C (label w? concep-
tually encodes value b € {0, 1} for the wire w). Then for the gate g having output

16 A Generic Framework for Secure Computations

wire w; and input wires w;, w; generator prepares garbled table with following en-
tries:

Encw:’i,wfj (Wlf(bj,b;)), 1)
where Enc is an encryption scheme fixed by generator. The collection of all
garbled gates is called garbled circuit.

Then the generator passes garbled circuit and mapping for the labels for the
output wires to the evaluator. Note that only the generator knows mapping between
binary input bits for input wires and he can simply send the garbled circuit to the
evaluator with label wl.xi for input wire w;, where x; is the i-th bit of his input. To
obtain wire labels for his input the evaluatorruns OT protocol described next with
the generator.

The evaluation of garbled circuit is done in a hierarchical way. Given labels
w;and w; of input wires of garbled gate g the evaluator decrypts the appropriate
entry of garbled table using keys w;and w;. When labels of all output wires are
computed the evaluator sends the function output value to the generator using pro-
vided mapping for output wires.

2.2. White-box cryptography based OT protocol

1-out-of-2 oblivious protocol (OT) is an essential part of Yao’s garbled cir-
cuit protocol. It involves two parties: sender holding two strings wy and wy, and
receiver holding selection bit b. OT protocol allows senderto transmit exactly one
input string wy, to receiver; receiver learns nothing about w,gqand sender does not
learn selection bit b. Currently several OT protocols are available. In our implemen-
tation we use novel white-box cryptography based OT protocol which is secure in
the semi-honest setting and is introduced in [10].

2.3. Optimization techniques

To get more practical use of this protocol many optimizations have been de-
veloped during the past decade, some of which are compatible with each other and
are used in our framework. Kolesnikov and Schneider [11] introduced a technique
eliminating the need to garble XOR gates (XOR gates become “free”, involving no
communication or cryptographic operations). Also, we use the technique proposed
by Pinkas et al. [12] allowing to reduce the size of a garbled table from four to three

D. Danoyan, T. Sokhakyan 17

ciphertexts, and saving 25% of network bandwidth for non-XOR gates. Another
optimization to apply is the FIeXOR technique by Kolesnikov et al. [13] combined
with two garbled row reductions [12] instead of one. We have added this option, as
two garbled row reductions and FreeXOR techniques are not compatible. The com-
bination of optimization techniques is user configurable.

3. Secure function evaluation framework description

Our implementation follows traditional development paradigms of SFE
frameworks described in[2].Like it is done in Fairplay, our framework contains a
circuit compiler generating single pass Boolean circuit from the algorithm descrip-
tion given in a higher level language.Popular flex and bison tools were used to ge-
nerate our compiler.

3.1. Language description

The input language of our compiler is an imperative one with static scoping.
The syntax of the language allows writing algorithms with complicated logic with-
out too much extra syntax. Declarations of functions are allowed, but they must be
non-recursive for the reason of security.Arrays are also included in our language,
but the elements’ count and access indices must be constants or determined at com-
pile time. All cycles are unrolled during compilation, thus cycle variable can be
used as an array index. Variables can be concatenated; bits or range of bits can be
selected or may be assigned to. Also, our compiler supports all types of bitwise op-
erations. We use single assignment algorithm from Fairplay to deal with assign-
ments within if statements effectively.

3.2. Compiler implementation description

The goal of the compiler is to generate maximum possible amount of XOR
gates to gain full advantage of Free XOR technique. All circuit blocks generated by
the compiler are locally optimized to meet this requirement. To obtain the best re-
sult we have used Jegalkin polynomials [14] intensively. Also, our compiler can
generate special types of circuits depending on the sizes of operands. For example,
when translating multiplication of two 512 bit integers Karatsuba-Ofman multipli-
cation [15] is more likely to be used instead of the standard multiplication circuit to
produce more efficient output.

18 A Generic Framework for Secure Computations

Fairplay compiler requires a huge amount of computational resources to ge-
nerate circuits having far less size than real world applications. The main goal of our
project is to create a general purpose framework for secure computations which is
open to modifications and further experiments. Thus, writing an application specific
framework for circuit generation, the technique which is used in[16], is not an accept-
able option for us. To resolve resource consumption problems, we have implemented
a brand new compiler generating a more efficient output than Fairplay does. For ex-
ample, Fairplay encourages the programmer to count the number of 1s in a 520 bit
array by a simple counting algorithm which leads to a circuit that uses 10 bit accumu-
lator during all computations, but a narrower accumulator is sufficient for early stag-
es; in our implementation the accumulator is getting wider as it is needed. This opti-
mization results in a more efficient Hamming distance circuit which is a widely used
sub circuit in many applications.

Our compiler requires a fixed amount of memory and utilizes availability of
multiple CPUs. To reach these goals we havesplit the file writer in a separate run-
ning thread of execution and the gate generator in another one. The connection be-
tween them is done via a circular queue. The compiler has configuration options
weather to use non-blocking or with mutual blocking queue. Running on computer
having at least two CPUs non-blocking queue is more efficient and all processing
resources of two CPUs are utilized. As a result, we get multiple running threads and
preliminarily fixed memory consumption.

3.3. Compiler optimizations

The gates are emitted by the front-end part of our compiler as the processing
of a single expression is completed, thus it contains the number of identity gates i.e.
gates whose output value is independent from values of input wires. To address this
problem our compiler also includes an optimizer back end. The elimination of
thiskind of gates is an important step of the optimization process and has influence
in both achieving less network communication (redundant gates are not transferred
via network) and doing unnecessary computations during circuit evaluation. Inver-
ter gates are also removed in this step. The removal of gates having no impact on
output gates is the last step of optimization of the code generated by the front-end of
our compiler. This step is identical to the elimination of the dead code which is an
essential step of every industrial compiler. To handle all these gate removal steps
efficiently (in terms of both memory consumption and processing time) we generate

D. Danoyan, T. Sokhakyan 19

and keep external tables (i.e. gate usage count, gate placement position, etc.) and
these tables are passed from every step of optimization to the next one. Processing
these tables in memory increases memory consumption, and to overcome this prob-
lem we make use of memory mapped files intensively. In future we plan to do expe-
riments on various types of storage for these tables: Berkeley DB and custom SQL-
like databases.

3.4. Framework description

Our framework used 80 bit wire labels for garbled circuits. SHA-2 is used to
generate the garbled truth-table entries as follows:

“ 9(bebj) b\ b bib;
Encw.bi,w%’j (Wk })ZSHA—Z(Wi‘ ”WJ]”k)GaWI;q(1),
L J

where notations are the same as in (1).

Whenever it is possible Intel Advanced Encryption Standard (AES) New In-
structions (AES-NI) are used instead of SHA-2 for better utilization of all pro-
cessing power of the CPU. This becomes especially important for Intel CPUs.

Before the evaluation of a Boolean circuit having N bit length, input from
generator party requires the OT protocol to be applied N times. Popular frame-
works for secure computations include OT protocols which use public-key ope-
rations. Instead we make use of white-box cryptography based OT protocol, which
is the magnitude of order faster than other OT protocols [10], in our framework and
avoid expensive public-key operations.

Both generator and evaluator parties are implemented using Message Passing
Interface (MPI) library to use multiple CPUs.

4. Conclusion

In this article we have presented a general purpose secure two party computa-
tion framework offering security in semi-honest adversaries which can efficiently
evaluate functions having huge circuit representations. Our compiler included in
this framework can generate large circuits using smaller computational resources
than similar compilers and utilizes the presence of multiple CPUs. Our evaluator
also takes advantage of parallel computing resources.

We plan to make further improvements in our compiler and language to sup-
port modular programming, which will allow secure computation systems program-
mers to create subroutines and distribute them. As our framework is secure in the
semi-honest model, we are working on adding safety against malicious adversaries.

20 A Generic Framework for Secure Computations

REFERENCES

1. A. Yao C.-C., How to Generate and Exchange Secrets (Extended Abstract), in 27-th
Annual Symposium on Foundations of Computer Science, Toronto, 1986.

2. Malkhi D., Nisan N., Pinkas B. and Sella Y., Fairplay-Secure Two-Party Computation
System, in Proceedings of the 13th USENIX Security Symposium, August 9—13, 2004.

3. Frederiksen T.K., Jakobsen T.P., Nielsen J. B., Nordholt P. S. and Orlandi C., MiniLE-
GO: Efficient Secure Two-Party Computation from General Assumptions., in EURO-
CRYPT, 2013.

4. Huang Y., Katz J. and Evans D., Quid-Pro-Quo-tocols: Strengthening Semi-honest Pro-
tocols with Dual Execution, in IEEE Symposium on Security and Privacy, SP 2012, 21—
23 May, 2012.

5. Lindell Y., Pinkas B. and Smart N.P., Implementing two-party computation efficiently
with security against malicious adversaries, in Security and Cryptography for Networks,
Springer, 2008,/PP. 2 20.

6. Evans D., Huang Y., Katz J. and Malka L., Efficient privacy-preserving biometric iden-
tification, in Proceedings of the 17-th conference Network and Distributed System Secu-
rity Symposium, NDSS, 2011.

7. Bogetoft P., Christensen D. L., Damgard I., Geisler M., Jakobsen T., Kroigaard M., Niel-
sen J. D., Nielsen J. B., Nielsen K., Pagter J. and others, Secure multiparty computation
goes live, in Financial Cryptography and Data Security, Springer, 2009. PP. 325-343.

8. Crescenzo G. Di, Private selective payment protocols, in Financial Cryptography, 2001.

9. Even S., Goldreich O. and Lempel A., A Randomized Protocol for Signing Contracts,
Commun. ACM, vol. 28, no. 6. PP. 637-647, 1985.

10. Jivanyan A., Khachatryan G. and Oliynik A. Effitient Oblivious Transfer Protocols Ba-
sed on White-Box Cryptography, PERSONAL COMMUNICATION.

11. V. Kolesnikov and Schneider T. Improved Garbled Circuit: Free XOR Gates and Applica-
tions," in Automata, Languages and Programming, 35-th International Colloquium, 2008.

12. Pinkas B., Schneider T., Smart N.P. and Williams S.C. Secure Two-Party Computation Is Prac-
tical, in Advances in Cryptology-ASIACRYPT 2009, 15th International Conference, 2009.

13. Kolesnikov V., Mohassel P. and Rosulek M. FleXOR: Flexible garbling for XOR gates that
beats free-XOR, in Advances in Cryptology-CRYPTO 2014, Springer, 2014. PP. 440-457.

14. Zakrevskii A., Minimal Realization of Partial Functions by Zhegalkin Polynomials, Av-
tomatika i telemekhanika, no. 5, pp. 134-140, 1996.

15. Machhout M., Zeghid M., Youssef W.E.H., Bouallegue B., Baganne A. and Tourki R.,
Efficient large numbers Karatsuba-Ofman multiplier designs for embedded systems,
20009.

16. Huang Y., Evans D., Katz J. and Malka L., Faster Secure Two-Party Computation Using
Garbled Circuits., in USENIX Security Symposium, 2011.

D. Danoyan, T. Sokhakyan

IJIAT®OPMA OBLIETO HASHAYEHUA
JJIs1 KOHOUJEHIINAJIBHBIX BBIYNCJIEHUN

J. Janosin, T. Coxaksin

AHHOTAIUA

B crarbe npexcrasiena miargopma oOIIero Ha3HaueHHs JUIsl IIPOBE-
JIeHUS] KOH(QUICHINAIBHBIX BBIYUCICHUH MEXIY JBYMS MOJYYECTHBI-
MH y4dacTHHKamu. [Inmardopma BritouaeT B ceOs COOCTBEHHBIH SI3BIK
BBICOKOTO YPOBHSI JUIsl ONTMCAHUSI BHIYUCISIEMBIX (DYHKIMHA W KOMITHIIS-
TOp Ul TOCTpOeHUs! OyJIbEeBOH CXEMBbl, peaM3yIOIIUil ONUCAHHYIO
¢ynkuo. KoMIumsTop MoKeT TeHeprpoBaTh CBEPXOOIIBIINE CXEMBI,
UCTIONb3Ysl MEHBIIIE BHIUMCIUTENIBHBIX PECYPCOB 10 CPABHEHHUIO C aHa-
JIOTHYHBIMU KOMIMJISITOPAMH U UCTIONIB3YET HAJIMYHE MHOTOTOIPOIIEC-
COpHO¥1 cpexapl. B Hameit mardopme ucnoiap3yeTcss HOBSHIHIA IpoTo-
KOJI 3a0BIBYMBOM Iepeiadyl, OCHOBAaHHOW Ha KpHITorpaduu mo crpare-
ruu Oenoro simuKa, 4yto NA€T HaM BO3MOXKHOCTh M30€XaTh J0pOro-
CTOSIIMX OTEpalUi KpUNTOrpa(uu C OTKPBITHIM KIFOUOM.

CUEZULARL LTULUUNRESUL NLUSHNI U LUNUSEUIUO
YNuLdPIELShUL ZUTYUULE P ZUUUL

. Twinjui, S. Unjwljjut
uuonenkU

znJudnid ukphuyugyus k punhwinip tywhwlnipjut yjuwn-
$npd’ twpwnbuduws Yhuwwquh] dwubwlhgibph Ynnuhg
hpuwjwiwgynn $nitughuyh hwoduwt hwdwp: Npuundnpdp
ubpwend £ hwpduplynn dniulhghwibph tjupwugpdwb hw-
dwp oqunugnpéyny pupdp dwjupnulh (kgnt b tjupugpus
dniujghwtt hpwgunn pnijjut ujubdwt Junnignn pupgduihy:
Fupguuhsp nttwly L udwbwnhy pupguwithsutipnh hudtdwn
wytih phs hwodupluyhtt phunipuubph b puqUuwwypngbun-
puwhtt dhowjuynh ogquuwgnpsdwdp Junnigh) qghpubs pnijjut
uubdwitp: Muwwndnpunid Yhpundws Eu hwipughtt putiughng
qunutwuqph pubtlupdtp gnpénnmipiniuubpp opowignn unpw-
gnij Ukpnnubp:

21

22 Becmnux PAY Ne2, 2015, 22-38

YK 519.72 Mocrymmna 16.11.2015r.

EFFECTIVE ALGORITHMS TO SUPPORT GRID FILES

G. Gevorgyan®, M. Manukyan?

'Russian-Armenian (Slavonic) University 123 Hovsep Emin St. Yerevan 0051, Ar-
menia, grigor.gevorgyan@gmail.com

2yerevan State University 1 Alek Manukyan St. Yerevan, 0025, Armenia,
mgm@ysu.am

SUMMARY

We present a new dynamic index structure for multidimensional data.
The considered index structure is based on the extended grid file con-
cept. Efficient algorithms for storage and access of grid file directory
are proposed, in order to minimize memory usage and key retrieval
complexities. Estimations of complexities for these algorithms are pre-
sented.

Keywords: grid file, algorithms, dynamic index, multidimensional da-
ta.

1. Introduction

The concept of grid files allows to effectively organize queries on multidi-
mensionaldata [1] and can be used for efficient data cube storage in data ware-
houses [2, 3]. The grid file can be represented as if the space of points is partitioned
in an imaginary grid. The grid lines parallel toaxes of each dimension divide the
space into stripes. The number of grid lines in different dimensions may vary, and
there may be different spacings between adjacent grid lines, even between lines in
the same dimension.

An example of 3-dimensional grid file is presented on Figure 1. Dimensions
X,Y and Z are partitioned into segments vy, v,, v3 (X partitions), wy, wy (Y parti-
tions) and uq, uy, uz (Z partitions). Intersections of those partitions form the cells of
the grid file. Each of those cells contains a pointer to the data bucket, where the
records corresponding to that cell are stored.

Dynamic aspects of file structures where all keys are treated symmetrically,
avoiding distinction between primary and secondary keys, are studied in [5]. The

G. Gevorgyan, M. Manukyan 23

paper introduces the notions of a grid partition of the search space and of a grid di-
rectory, which are the keys to a dynamic file structure called the grid file. This file
system is able to adapt to its contents under insertion and deletion operations, and
thus achieves an upper bound of two disk accesses for single record retrieval. It also
effciently handles range queries and partially specified queries. Several splitting and
merging policies, resulting in different refinements of the grid partition are consi-
dered.

In [6] algorithms which generalize the standard single key retrieval search
techniques and apply them to search of records using several keys are specfied. Two
index file organization techniques, multidimensional dynamic hashing and multidi-
mensional extendible hashing, which are multidimensional generalizations of dynam-
ic and extendible hashing correspondingly, are specified and the average index size
values for both cases, as well as their asymptotic expansions, are estimated. In partic-
ular, multidimensional extensions of linear and extensible hash tables also have been
proposed in [1, 7, 8].

Data
buckets

AY /‘ A\ T

=
1

wz[
u}\\

l"I2

/* N
Grid /\‘Vl\ A \N
partitions y4

Figure 1: An example of 3-dimensional grid file

In this paper an extension of the grid file concept is proposed. Namely, we
consider each stripe as a linear hash table. As a result, as opposed to grid file con-
cept, our concept allows to increase the number of buckets more slowly. Usage of
chunking technique allows us to solve the empty cells problem in grid file.

24 Effective Algorithms to Support Grid Files

This paper is organized as follows: an approach to grid file structure modifi-
cation is proposed in Section 2. Operations on grid file aredescribed in Section
3.Improvement of grid file structure aiming to reduce index file size is proposed in
Section 4. Conclusions are provided in Section 5.

2. Grid file structure

One of the problems intrinsic to grid files is the problem of non-efficient
memory usage by groups of cells, pointing to the same data buckets. We propose an
alternative data strucure for the grid file index, aiming to avoid storage of multiple
pointers to the same data buckets, as well as to maintain slow index size growth and
provide reasonable costs for common operations.

Firstly, we refuse from storing the grid file as a multidimensional array. The
reason for that lies within the necessity of creation of numerous new cells each time
a data bucket is split, while many those cells contain duplicate pointersto the same
data buckets. Instead, all cells which contain pointers to the same data buckets are
grouped into chunks, represented by single memory cells with one pointer to the
considered data bucket. Chunks are the main units for datainput/output, as well as
are used for data clusterisation. Chunks are also used as a mechanism of struggle
with empty cells problem in grid file. For each dimension, the information about
how it is divided is stored in a linear scale. The data subspace, corresponding to a
particular element of that scale, is called a stripe, and is represented by an array of
pointers to corresponding chunks.

Secondly, we consider each stripe as a linear hash table, allowing usage of
overflow blocks to reduce the number of chunk partitions. The number of overflow
blocks may be different for different chunks, however we ensure that for any stripe
the average number of overflow blocks for the chunks of that stripe is not greater
than one. This allows us to significantly reduce the total number of chunks, while
guaranteeing not more than two disk operations for data access in average.

An example of 2-dimensional grid file is presented on Figure 2. It contains
five chunks, each pointing to corresponding data bucket. Two chunks use overflow
blocks. The solid lines represent borders between chunks, and dashed lines mean
imaginary space divisions.

G. Gevorgyan, M. Manukyan 25

Chunks Imaginary divisions
y /\
4/ \
wn
(]
o —>»
=]
m A4
) » Y
Y Y
K]
. |
Data e v
buckets
Overflow
blocks

Figure 2: An example of 2-dimensional grid file

2.1. Formalization

Let us formally represent a grid file as a triple F = (D, S, C) where D is the
set of dimensions, S is the set of stripes, and C is the set of cells. Each stripe be-
longs to exactly one dimension. If stripe s belongs to the dimension d, we say that s
is a stripe of dimension d and denote it as s € d. We call a set of cells A (€ a grid
file chunk (or just chunk), if the divisions between those cells are imaginary, and
they all refer to the same bucket.

Observation 1. If only split operations are performed on the grid file, each
grid file chunk has a shape of n-dimensional parallelepiped.

Proof. If we perform a split operation on a parallelepiped-shaped chunk, it
shall split into two parallelepiped-shaped chunks. Since the grid file originally has a
form of n-dimensional parallelepiped, and every chunk is obtained by consecutive
applications of split operation, hence each chunk will be parallelepiped-shaped at
each point of time.

26 Effective Algorithms to Support Grid Files

2.2. Several concepts and their estimations

In this paragraph we investigate several grid file concepts and derive estima-
tions important for further material. Analysis are done under the assumption that all
dimensions of considered grid file data domain are independent and equivalent. Let
us denote the number of dimensions as n and the average number of splits per-
formed in one dimension as m.

Number of cells. Since each of n dimensions is divided into m parts in aver-
age, there exist @ (m™) cells in average.

Number of stripes in one particular dimension is equal to number of splits
towards that dimension @ (m) in average.

Total number of stripes is hence @(nm) in average.

Total number of chunks. One new chunk is created as a result of a split opera-
tion, hereby the number of chunks is in direct proportion with the number of splits
is @(nm).

Number of cells per chunk in average is the total number of cells divided by
number of chunks is

mn
¢ —)

Average length of chunk side. Using Observation 1, and assuming that the ave-
rage shape of a chunk is an n-dimensional cube, the average length of its side is

o "=)=0 (=)
mn Vmn
Average number of chunks crossed by a single stripe. A stripe has an average

length of m cells in all of its n-1 dimensions. Since the average length of a chunk
side is

m
0 (W)
a stripe will cross
n—1
o (=] |=e(Cvam)™)
Vmn

For simplicity of reasoning we shall weaken this estimation to O (mn).
The following table contains summary of the estimated values:

G. Gevorgyan, M. Manukyan 27

Value Assessment
Number of dimensions om)
Number of divisions per dimension O(m)
Total number of cells o(mm")
Number of stripes per dimension o(m)
Total number of stripes O (nm)
Total number of chunks 0 (nm)
Number of cells per segment 0 m'
)
Average length of segment side 0 < m)
Vmn
Average number of segments crossed by stripe 0(mn)

Table 1: Estimated average values

2.3. Directory size

Since each of the ®@(nm) stripes crosses O (mn) chunks in average, the total
number of stored pointers will be equal to 0(n?m?). Also each chunk has one poin-
terto data bucket, ® (nm) pointersin total. Hereby, the grid file directory size in this
case is 0(n*m?).

3. Grid file operations

In this section we review basic operations performed with usage of grid file.
We distinguish two aspects of operations: index modification expences (estimated
in terms of Big-O notation) and operation costs expressed in disk operations.

3.1. Index modifications

Insert. To insert a value we first locate the chunk it belongs to by given coordi-
nates, then read the corresponding data bucket and perform insertion. Since we consider
each stripe as a linear hash table, in case of insufficient space it may be possible to add
an overflow block. However, if after insertion there exists a stripe for which the average
number of overflow per chunk exceeds 1, we need to split current chunk into two parts,
and reorganize corresponding data buckets.

28 Effective Algorithms to Support Grid Files

The following pseudocode illustrates the insertion procedure.

Algorithm 1. Insertion

Insert(v):
in: v — value to insert
1: ¢ « FindChunk(v) > Get corresponding chunk
2: b « LoadLastBlock(c) > Load the last block of that chunk
3: if not Full(b) or CanOverflow(c) then > Check if insertion is possible
4: AddRecordToBlock(v, b) > Perform insertion
6: else
7: Split(c) > Perform a split
8: Insert(v) > Try insertion again
9: end if

The AddRecordToBlock function used above tries to insert provided value into
the given block. If it is not possible due to occupancy of the block, it craetes an over-
flow block and inserts value there. It is illustrated by pseudocode below:

Algorithm 2. Addition of a record to block

AddRecordToBlock(v, b):
in:v - value to insert, b - block to try insertion
out: block where the value was actually inserted
1. if Full(b) then > Add an overflow block if necessary
2: AddOverflowBlock(b)
3: b < LoadNextBlock(b)
4: endif
5. WriteRecordToBlock(v, b) > Add record to block and save to disk
6: SaveBlock(b)
7. returnb

Split. Consider a chunkc which is needed to be split. Firstly, we choose the
dimension in which the split shall be performed. For that purpose we choose some
dimension d which currently contains the least number of stripes. Secondly, we
choose some coordinate d, in dimension dwhich will define the dividing hy-
perplane. Chunk c then is split into two chunks ¢; and c,with all points from ¢ with
d coordinate less than d, belonging to a;, and the rest point belonging to a,. The

G. Gevorgyan, M. Manukyan 29

coordinate dgis chosen in such a way that the numbers of points in the resulting
chunks are as close as possible. This can be achieved by storing additional statistic-
al data for each chunk — most frequent values and their quantities (mfv) and total
number and average value of infrequent values (oav). As a result of split, some

stripe
newly

s in dimension d is also divided into two stripes s;and s,. Pointers to the
created chunks should be added to pointer lists of allstripes crossing them.

Split operation pseudocode is presented as Algorithm 3:

Algor

ithm 3.Splitting a chunk

Split(c):
in: ¢ — chunk to split

1:

eoNoaRLON

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21
22
23

Find the split dimension d and split coordinate d, in it
Initialize two new chunks ¢; and ¢,
Load first blocks of chunks c, ¢; and ¢, as b, b; and b, correspondingly
repeat

forall r € b do

if [I;(r) < d, then > Redistribute all records from
b, <— Add Record To Block(r, b;) > old chunk to the new ones

else
b, Add Record To Block(r, b,)

end if

end for

b« Load Next Block(b)
until Exists(b)
s <« Find Stripe(d, d;)
Split stripe s by coordinate d, into two new empty stripes s; and s,
for all ¢, € Stripe Chunks(s) do
Add chunk ¢ in to strupes s;and s,

end for
Add chunks ¢, c, to stripes sy, s, correspondingly
for all s € Stripes Of Chunk(c) do
:Add chunks c;and c, to stripe s
> end for
: Remove Chunk(c) > Remove the old chunk pointer

X and

As an example, let us consider a 2-dimensional grid file with coordinate axis
Y. Assume that each data block has capacity enough to contain not more than

30 Effective Algorithms to Support Grid Files

5 records. Analogously to linear hash tables, we shall ensure that in each stripe the
ratio of average number of records in a block to block size does not exceed some
constant value [1]. We shall use the value of 80% for this purpose. Let us denote
number of records in a stripe as » and number of chunks in a stripe as c. From the
above condition we get thatr /c < 4 inequality must take place. Let us also denote
r/cratio as k.

At first, we have one chunk A, containing two points (1; 1) and (5; 5). We
also have one horizontal stripe S} and one vertical stripe S1. Then we insert two
points (1; 5) and (4; 1). After that, for each stripe r =4; c =1 and k = 4, so we
can proceed without splitting the chunk. Since there is enough space in data bucket,
the records will be just added there.

This process is illustrated in Figure 3.

Y A St YA St
5 (] ; o [
4 4
S 3 A, ST A,
2 2
11l @ 11| @ [e]
0J]l1 2 3 45 X 0 ‘1 2 3 45 X
1,1
()
S:‘={A1} S\1/={A1} S:.={A1} S\1/={A1}
Figure 3: A simple insert operation
YAS! S2 YAS, S¢
5| @ ° SE 5| @ o As. gz;
4 4
Sk 3 A0 A, 3 A |® 0
2 Sﬁ 2 A,
1| e ° il e °
011231456;(0112314563(
(1,1) (1,1) ,
(1, 5) (1, 5) .
Shv={A,A} Sv={A;} Sh={A,A} Si={A}
S\%:{Az} Sﬁ={A1:A3} S\%:{Aera}

(@) Inserted (2, 3) (b) Inserted (3, 3) and (3, 5)

Figure 4: Split operations

G. Gevorgyan, M. Manukyan 31

Let us insert another point (2; 3). If we insert it into chunk A;we shall get
r=25;c=1and k =5 > 4, so we have to split the chunk. After splitting it verti-
cally with x = 1.5 line, we obtain two chunks A;and A, as well as anoter vertical
stripe S2. Now for stripe S} parameter ¢ equals to 2, because S} now consists of
two chunks, and k = 2.5 allows us to proceed with insertion.

It is fine to insert another point (3; 3) into chunk A,, but after adding one
more point (3; 5) we face a necessity to split the chunk A,, because this time k =
5 > 4 for stripe S2. We split it horizontally with line y = 4. That line also crosses
chunk A1, but we do not split it too. The result of above operations is illustrated on
Figure 4. We represent the imaginary split of chunk A; with a dashed line.

Finally, let us insert 3 more points: (3; 2), (5; 1) and (5; 3). There is enough
space for (3; 2) and (5; 1) in chunk A,, however the third point (5; 3) does not fit
there because the corresponding bucket is already full. However, for both stripes S}
and S2 crossing the chunk A, we get r = 8; ¢ = 2 and k = 4, so we can avoid
splitting the chunk (and increasing directory size) by using an overflow block. The
result of such insertion is presented on Figure 5.

Sr11 ={A,A} S\1/= {A;}
Sﬁ ={A,As} 53= {A A}

Figure 5: Overflow block usage

Complexity. A single split operation increments the number of chunks and the
number of stripes. Per Table 1, the new stripe pointer list will contain ®(nm) ele-
ments in average. Also, ©®(nm) pointers will be added into pointer lists of all other
dimensions. Hence, split operation will increase directory size by 6@ (nm).

Delete. To delete a value, as when inserting, we first find the chunk it be-
longs to and read the corresponding data block. After deletion, the data block may
become empty, meaning the considered chunk does not contain any more points. In

32 Effective Algorithms to Support Grid Files

such cases, we can merge this chunk with some neighbour chunk. Even if the data
block does not become empty, it may still be possible to merge the chunk with a
neighbor chunk, if the condition of having not more than one overflow block per
chunk in average is satisfied. The dimension towards which to perform the merge is
again chosen in such a way that the number of stripes in different dimensions dif-
fers not more than by 1.

Merge. Consider two chunks a; and a, which have a common boundary in
dimension d and are being merged into a single chunk a. For any stripe s if its poin-
ter list contains either a pointer to a; or a,, those should be replaced with a pointer
to a instead. There is a possibility that after this operation an empty stripe arises,
and has to be removed.

Merging algorithm is illustrated in the following pseudocode:

Algorithm 4. Merging two chunks

Merge (cy, ¢3):
in: ¢y, ¢; — chunks to merge
1: d <« Boundary Dimension (cy, ¢;)
2: Load first blocks of chunks c;, ¢, as by, b, correspondingly
4: repeat
3: forallrin b, do
4: b; < Add Record To Block (r, b;)
5: end for
6: b, « Load Next Block (c,)
7: until Exists (b;)
8: for all s € Stripes Of Chunk (c,) do
9: Add chunk c; to stripe s
10: Remove chunk c, from stripe s
11: end for
12: return ¢,

Complexity. A single merge operation will remove one chunk and the number
of pointers equal to the number of stripes crossing the merged chunks — @(nm) in
average.

Single key retrieval. In order to find all records for a key k from dimension
d we first find the stripe s which k belongs to, and then traverse over all the chunks
which are accessible from pointer list of s. Since all of these chunks have to be con-

G. Gevorgyan, M. Manukyan 33

sidered, and no other chunks may contain records matching the key k, only neces-
sary and sufficient chunks will be traversed. The average number of such chunks is
O(nm) according to Table 1. Assuming that the required stripe s can be found in
O(logm) time, the time complexity of a single key retrieval operation is
O(nmlogm).

Here is the single key retrieval pseudocode:

Algorithm 5. Finding values by a single key

Find(k, d):
in: k —lookup key, d — lookup dimension
out: set of all records matching the lookup criteria
1: result < @

s « FindStripe(d, k)

: for all ¢ eChunks Of Stripe(s) do

. b « Load First Block(c)

. repeat

: forallr € bdo
if I1;(r) = k then

result « result U {r}

end if

end for

10: b « Load Next Block(b)

11: until Exists(b)

12: end for

13: return result

LoONDAOREWN

Multiple keys retrieval. Multiple keys retrieval is performed in two steps.
First, a single key retrieval procedure is called for each of the keys, each one sepa-
rately retrieving a set of referable chunks. These sets are then intersected, and only
buckets corresponding to chunks in the intersection are being considered. Time
complexity to perform a query using k keys is thus O (knmlogm).

Algorithm 6. Finding values by multiple keys

Find(S):
in: S —set of (key, dimension)pairs

34 Effective Algorithms to Support Grid Files

out: set of all records matching the lookup criteria

1: result « @

2: forall (k,d) € S do > Lookup by all keys separately
3: result « result N Find(k, d) > and intersect the results

4: end for

5. return result

3.2. Disk operations

Point lookup. To find a point provided its coordinates, we first find the chunk
it belongs to in the grid file, then read the corresponding data bucket. This requires at
most two disk operations in average, since the average number of overflow blocks per
bucket is not more than one. Additionally, if an update operation has to be performed,
a write opera tion is needed. Besides, adding/deleting a record can result in bucket
overflow or exhaustion, rising a necessity to perform a split or merge operation cor-
respondingly, resulting in another disk operation.

Queries with several coordinates and value ranges. We shall traverse over
all chunks, belonging to intersection of the stripes corresponding to the provided
coordinates, or to the grid file subspace matching the provided ranges. Number of
disk operations equals to the number of considered chunks times two (due to over-
flow blocks).

Closest object lookup. To find the point, closest to the provided one, we first
find the chunk it belongs to, and check corresponding data buckets. It may happen
that, however, the nearest point belongs to a neighbor chunk, and it needs to be con-
sidered as well. In worst case, we shall need to visit all n neighbor chunks. Since
reading data belonging to one chunk requires not more than 2 disk operations in
average, in worse case we shall need to perform 2(n + 1) disk operations. Note that
necessity to add/remove a record and potential split/merge operations will also in-
crease the number of disk operations.

4. Improvement of the grid file structure

In this section a grid file structure modification is proposed, allowing to re-
duce directory size from 0(n®>m?) to 0(n®m). To achieve this goal we reorganize
pointers storage, allowing chunks to refer to each other:

Definition 1. Let there be a total order < defined on the set of chunks. Let us
also denote the projection of chunk A to dimension d as I1,;(A). The set of pointers
E is defined as:

G. Gevorgyan, M. Manukyan 35

1. For each pair of chunks A and B s.t. A < B and a dimension d exists s.t.
M;(A) € ;(B), and no chunk C exists st. A< C < B and I1;(A) €
11;(C),1;(C) < I1;(B), there exists a pointer (4,B) in E. Let us call
such pointer a pointer of dimension d.

2. For each chunk A and stripe s of dimension d, if there exists no pointer of
dimension d incoming into 4, then there exists a pointer (s, 4) in E.

4.1. Directory size

Consider the sequence of chunks Ay, A,, ..., Ay (4; < A; < i <j) crossed
by a stripe s of dimensiond. For each pair of chunks 4; and 4; (i < j), let us con-
sider their projections 11, (4;) and I1, (4;). These projections intersect, because both
segments are crossed by the stripe s. There are four possible relative positions of
Iy (A;) and 114 (4;), and only one of them meets the condition of 11, (4;) < I14(4)).
Based on the assumption that all of these four cases are equiprobable for each pair
of chunks, we can say that the probability of having a pointer between from chunk
A; to chunk 4; is:

P((4,4)€E) =1

Let us calculate the expected number of pointers (s, 4;). For each chunk A;
such a pointer exists, if there is no other chunk 4; s.t. A; < A; and I1;(a;) S
Iy (4).

Since

vie[Lj—11P((4.4) ¢ E) =2

then
j—-1

3
P(vie([l,j—1],(4.4) ¢E) = <Z)
The expected number of such pointers is thus:
k 31 30k
- =4(1-|-= <4
26 ~+(-6)
j=1
So the total number of pointers stored in each stripe’s pointer list does not
exceed 4 in average. Taking into account that each chunk A has n stored pointers

(one per each dimension), and there are ® (nm) chunks in average, we can estimate
the total number of pointers — as well as directory size — as:

|E| = 0(4nm + n?*m) = 0(n’m).

36 Effective Algorithms to Support Grid Files

4.2. Comparison of directory size

Our approach proposesseveral optimizations to reduce the directory size. One
is considering each stripe as a linear hash table, allowing not more than one over-
flow block per bucket in average. We also use the satistical values mfv and oav dur-
ing chunk splitting, described in Section 3.1, aiming for uniform filling of the
chunks. Another optimization is usage of chunking technigue to solve the problem
of empty cells in grid file. In [6] two main techniques for grid file organization,
multidimensional dynamic hashing (MDH) and multidimensional extendible hash-
ing (MEH), are desribed and estimates of directory sizes for both cases are pro-
vided: O (r”%) and 0 (r”:s;—ll) correspondingly, where r is the number of
records, s is the block size and n is the number of dimensions. It should be noted
that we consider the case of uniform distributions.

For comparison let us express the directory size in case of our approach using
these values.Since we allow each chunk to have one overflow block in average, we
can, without loss of generality, assume that each of the overflow blocks will be
half-full in average, meaning that we shall store 1.5s records per chunk in average.
Hereby we can conclude that it will be required to have %55 chunks to store allr

records, which is equivalent to @(nm) according to Table 1. Hereby, according to
Section 4.1, our directory size can be estimated as O (ZBL:) Compared to MDH and

1 n-1
MEH techniques, directory size in our approach is O <32s;s> and 0 (3“2’:_1> times

smaller correspondingly.

5. Conclusion

In this paper a new dynamic indexing scheme for effective data management
is proposed. Our approach to such index structure is based on the grid file concept.
This concept is extended within our approach. Namely, we consider each stripe as a
linear hash table. As a result, the number of overflow blocks for each bucket per
stripe is less than one in average, and the growth of buckets quantity is slow. We
propose a modification of grid file structure, providing analysis of memory usage
and costs of add, remove, split, merge, and lookup operations. Usage of chunking
technique allows us to solve the empty cells problem intrinsic to grid files. Efficient
algorithms for storage and access of grid file directory are proposed and estimations
of complexities for these algorithms are presented.

G. Gevorgyan, M. Manukyan 37

REFERENCES

1. Garcia-Molina H., Ullman J/ and Widom J., Database Systems: The Complete Book.
Prentice Hall, USA, 20009.

2. Whang K.-Y. and Krishnamurthy R., The multilevel grid file — a dynamic hierarchical
multidimensional file structure. In DASFAA Conference, pages 449-459, 1991.

3. Luo C., Hou W.C., Wang C. F., Want H. and Yu X.,Grid file for efficient data cube sto-
rage. Computers and their Applications, pages 424-429, 2006.

4. Karayannidis N.N., Storage Structures, QueryProcessing, and Implementation of On-
Line AnalyticalProcessing Systems (Ph.D. Thesis). Athens, 2003.

5. Nievergelt J. and Hinterberger H., The grid file: Anadaptable, symmetric, multikey file
structure. ACMTT ansactions on Database Systems, 9 (1):38-71, March 1984.

6. Regnier M., Analysis of grid file algorithms. BIT, 25 (2):335-358, 1985.

7. Otoo E.J., A mapping function for the directory of amultidimensional extendible hash-
ing. In 10™International Conference on VLDB, pages 493-506. Singapore, Aug 1984.

8. Otoo E. J., A multidimensional digital hashing schemefor files with composite keys. In
ACM SIGMOD International Conference on Management of Data, pages 214-229.
USA, 1985.

9. Papadopoulos A.N., Manolopoulos Y., Theodoridis Y. and Tsoras V., Grid file (and fam-
ily).In Encyclopedia of Database Systems. PP. 1279-1282, 2009.

10. Sharma S., Tim U. S., Wong J., Gadia S. and Sharma S., A brief review on leading big
data models. In Data Science Journal, December 2014.

38 Effective Algorithms to Support Grid Files

3®PEKTUBHBIE AJITOPUTMBI JIJIS IOJJIEPKKH CETOYHBIX ®ANJIOB
I'. I'eBoprsin, M. MaHyKsIH
AHHOTAIUA

IIpennosxeHa AuHaAMHUYEcKas CTPYKTypa MHIAEKca JUIi MHOTOMEPHBIX
JaHHBIX. PaccMarpuBaemas CTpyKTypa MHAEKCa OCHOBaHAa Ha MOHATHU
cerouHoro Qaiina. C 1enp0 MUHIMH3aLIUuN 00beMa UCIIOIb3YeMOil ra-
MSTH ¥ BPEMEHH INOMCKA MO KoYy NpeiaratoTcs 3GpQeKkTHBHbIE ai-
TOPUTMBI XPAHCHMS M JIOCTyIa K TUPEKTOpuH MHAekca. [IpuBomsrcs
OLICHKH CJIOKHOCTH 3THX aJITOPUTMOB.

8UL38USPL $USLET ULQUUSU UL EDESUSH] ULSRNhEULES
Q. Gunpqyuil, U. Umunihjut
uuoenenku

Unwowplyt] E puquuswth nyjujakph htugkpuwynpdwi tnp
nhtwdhly jurmguwsp: Thunwplynn jurnigyuspp htugmd k
guugujhtt dwyh hwuljugnnnipjut Jpu: Oquugnpdynn hhon-
nnipjul Swyuwih b pwbwhnyd npndw dudwiwlh Yhuththqu-
ghuyh tyuwwnwlny wnwewnlyl) ku huntipuh wwhywhdwi b
ogunugnpddwt EpLljnhy wignphpdutp: Fipdnud G wyny wign-
nhpdubnh puppmipjut gpwhwwnwlwbbpp:

Becmnux PAY Ne2, 2015, 39-53 39

YK 004.056.55 IMocrymuna 13.11.2015 .

REVIEW OF SEARCHABLE ENCRYPTION ALGORITHMS

M. Hovsepyan

Russian-Armenian University Department of System Programming
Republic of Armenia, Yerevan, 0051
hovsepyan.mihran@gmail.com

SUMMARY

Searchable encryption allows the user to store his data in untrusted en-
vironment such as public cloud storages in encrypted form but still be
able to access the data via search. Meantime the storage provider can-
not learn neither the data nor even the search queries. The importance
of such functionality raised with the wide adoption of public cloud sto-
rages such are Dropbox or Google Drive and this discipline gained
high attention from research community. This paper provides a generic
survey for practical searchable encryption schemes along with light
analysis of advantages and disadvantages of each schema.

Keyword: secure, search, cryptography, cloud storage.

1. Introduction

Searchable encryption is a technique that allows a client to store documents
on a server in encrypted form without sacrificing the user experience of accessing
the data. This technique has significant importance in this cloud-driven era and the
area of searchable encryption has been identified by Defense Advanced Research
Projects Agency (DARPA) as one of the most important technical advances that can
be used to balance the need for both privacy and national security in information
aggregation systems [1].

In recent years many practical schemes have been developed for performing
searchable encryption with optimal search time and efficient memory consumption
with reasonable security leakage and for different settings. In the symmetric search-
able encryption domain, the indexing and the retrieval are performed by the same
client. The symmetric searchable encryption algorithms can be either static, which
allows indexing the data once and then perform search functionality, or dynamic
allowing updating the index upon changes of the data. In the public-key searchable

40 Review of Searchable Encryption Algorithms

encryption setting the storage can be done by different users but the retrieval is per-
formed by the only client. In the multi-key searchable encryption the storage and
retrieval can be done by different users. In this setting the access graph defines the
retrieval permissions for different users. We review the most efficient and practical
searchable encryption algorithms from three different domains.

2. Symmetric Searchable Encryption (SSE) Schemes

The most practical symmetric searchable encryption schemes are based on
the so-called secure index approach. In an index-based SSE scheme [4, 5, 6, 7, 8, 9,
11] the encryption algorithm takes as input the sequence of n files f = (fi, ...,)
and outputs an encrypted index and a sequence of n ciphertexts ¢ = (cy, ..., ¢,), One
for each file. All known constructions construct c¢ encrypting the files f using any
symmetric encryption scheme, i.e., the file encryption does not depend on any un-
usual properties of the encryption scheme. To search for a keyword w the client
generates a search token t,, and given t,, the server can find the identifiers I, of the
files that contain w.

But the idea of secure index was not appeared at once. In the paper by D. X.
Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted
data” [1] the problem of searchable encryption has been explicitly considered for
the first time and a scheme with search time that is linear in the size of data collec-
tion has been presented. The basic idea was to encrypt the file word by word in a
specific manner shown in the graphic below.

Plaintext

|

W,

{H

E(W;)

N
\t)

Ciphertext

Stream Cipher —— S; Fi (S

N

F,

As can be seen the key owner can easily construct the ciphertext for the en-
crypted words and search it in the encrypted files. Their construction supports inser-
tions/deletions of files in a straightforward way as each file was encrypted word by

M. Hovsepyan 41

word in a specific manner. However this construction has significant information
leakage as well as non-practical characteristics.

Symmetric searchable encryption can be achieved in its full generality and
with optimal security using the work of Ostrovsky and Goldreich on oblivious
RAMs [2,3]. More precisely, using these techniques, any type of search query can
be achieved (e.g., conjunctions or disjunctions of keywords) without leaking any
information to the server, not even the “access pattern” (i.e., which documents con-
tain the keyword). This strong privacy guarantee, however, comes at the cost of a
logarithmic (in the number of documents) number of rounds of interaction for each
read and write.

Next Goh [4] proposed a dynamic solution for SSE introducing the concept
of Secure Index. This secure index allows a user to search for an encrypted docu-
ment that is containing a keyword without decrypting the document. A Bloom Filter
is used as a document index to keep track of each of the unique words. Before each
of the unique keywords is indexed and stored into Bloom filter objects, those
unique keywords have to go through a pseudorandom function twice. The purpose
of doing so is to make sure that for each of two or more documents, if they contain
the same keyword the code word will represent them differently. The solution re-
quires linear search time, and because the use of Bloom filters can result in false
positives, the search may return indexes already deleted from the index. Neverthe-
less, the Secure Index is used as the basis of all upcoming constructions. Next we
present the latest most efficient and practical symmetric searchable encryption algo-
rithms.

2.1. Highly Scalable Static SSE Scheme with Support for Boolean
Queries

The next static searchable encryption scheme [6] has been designed specially
to efficiently support not only search of single keyword but also their Boolean com-
binations particularly multi-keyword searches. The specifications of the main func-
tions are given bellow:

— Gen(1%): In this initialization step the data owner (client) using a random bit-
string (password) generates three k-bit uniformly random keys K, Ky, Kr. Al-
so in this step we choose a keyed hash function F:{0,1}* x {0,1}* — {0,1}*
(for example HMAC or CMAC).

42 Review of Searchable Encryption Algorithms

— Enc(Ks, Ky, K7, f): For the given set of files f client generates secure index
using generated in the first step keys and stores them into the untrusted 3" par-
ty data storage (server).

a. Parse the file collection f as W = (w;, Fid,,,,)?=1 where D is the count of

all different keywords in all files and Fid,,, is the set of file ids which con-
tain the word w;.
b. Initialize XSet empty set and A empty dictionary.
c. For each keyword w from W build A dictionary and XSet as follows.
1. Initialize t to be an empty list of k-bit strings.
2. Set K. « F(Kg,w), xtrap « F(Kx,w), and stag <« F(K,w)
3. For all file indexes fid € Fid,, which contain the keyword w:
1. Compute e < Enc(K,, fid) and append e to t.
2. Compute xtag « F(xtrap, fid) and add xtag to XSet.
3. A[stag] « t.

d. Store the encrypted index (4, XSet) along with the encrypted files into the

untrusted server.

— Trpdr(Kr, K, K, wi, Wy, ..., w,): For searching some Boolean combination of
keywords the client generates special tokens (trapdoor) using the secret keys
Ks, Ky , K7 as follows:

a. K, « F(Ks,w,), stag « F(Ky,wy),

b. Foreachi = 2,...,n setxtrap; « F(Ky,w;)

c. Outputs the (stag, K,, xtrap,, ..., xtrap,,) as the trapdoor.

— Search((stag, K,, xtrapy, ..., xtrap,), A, XSet): The untrusted server gets
the trapdoor from the client and performs the following actions:

a.t « Alstag].

b. For each ciphertext e in ¢, it computes:

1. fid « Dec(K,,e)

2. For all i from 2 to n check whether fid file contain w; by checking if
F (xtrap;, fid) € XSet. Return fid if it contains only the required key-
words.

From the description of the index and query construction and search algo-
rithm it is clear that using this approach any Boolean combination of keywords can
be quickly searched after converting it to the disjunctive normal form and creating
trapdoors for each conjunction.

M. Hovsepyan 43

2.2. Dynamic Multi-User Symmetric SSE

In the real world the data is always dynamic meaning that files can be added
or deleted or even the content of each unique file may be changed in the data collec-
tion. In this scenario it is desirable to index the data with dynamic methods allowing
to efficiently updating the secure index without requiring of re-indexing of the
whole database at each update. Below we review one of the most efficient and pop-
ular dynamic searchable encryption schemes.

In [7] a practical multi-user SSE is presented which allows dynamically add
and delete files from the secure index in an efficient way. The construction is based
on the inverted index approach. The scheme is a tuple of 9 algorithms (Gen, Enc,
SearchToken, AddToken, DelToken, Search, Add, Del, Dec). Here we describe on-
ly the index construction and search methods referring the reader to the full paper
for details on how to update the secure index.

— Gen(1%): Select uniformly random four k-bit keys K = (K1, K, , K3, Ky).

— Enc(K, f): Using index generation keys K and the user’s document collection
f = (f1, ..,) generates an encrypted index y and encrypted documents
¢ = (cq, .., €y) in the following way:
a. Let A; and Ay be arrays of size %

size #W and #f, respectively. 0 Is a (log #A)-length string of 0's and free

isaword notin W.

b. for each word w € W:
1. Create a list L,, of #f,, nodes (Nl, ...,N#fw) stored at random locations
in the search array A; and defined as:
N; := ({id;,addrg(Nj 1)) @ Hi (Ky, 17); 17)
where id; is the ID of the i-th file in f,,, r; is a k-bit string generated un-
iformly at random. K,, := P, (w) and addr(Ngg_+1) = 0.
2. Store a pointer to the first node of L, in the search table by setting
Ts[Fk, (W)] := (addrs(N;),addryq(N7)) @ Gk, (w)
where N* is the dual of N, i.e., the node in A4 whose fourth entry points
to Ny in A;.
c. for each file f in f:
1. Create a list Ly of #f dual notes (Dl, ..,D

+ z and let T, and T, be dictionary of

#7) stored at random loca-
tions in the deletion array A, and defined as follows: each entry D; is
associated with a word w, and hence a node N in L,, . Let N, be the

44 Review of Searchable Encryption Algorithms

node following N in L, and N_; the node previous to N inL,,. Then,

define D; as follows:
D im (addrd (Dj41),addrg(N*;),addrq (N7), addrg (N),)
L addrs (N—l)laddrs (N+1)IFK1 (W)

@ Hy (K, 1)); r{)
where ri' is a k-bit string generated uniformly at random. K¢ := Lg_ (f),
and addry (D#F +1) =0.
2. store a pointer to the first node of Ly in the search table by setting
Ta[Ri, (D] = (addr,(D1)) @ My, ()

d. Create an unencrypted free list L. by choosing z unused cells at random
inAg and in A,4. Let (Fy, ..., E,) and (F{ , FZ) be the free nodes in A, and
Ay, respectively. Set

T,[free] := (addr,(F,), 08 #A)
andforz >i > 1 set
Ag[addr, (F))] := (0"8 #f addr, (F;_),addry (F;))
where addr (Fy) = 0'°8 #4,

e. Fill the remaining entries of A; and A; with random strings.
f.For1 <i<#f letc; « SKE.Encg,(f).
g. Output (y,), where y := (A, Ts, Ag, Tg) and ¢ = (cy, ..., Cyt)-

— SrchToken(K1, K5, K3, w): the client takes the key K and keyword w and out-
puts the corresponding search token as

7, 1= (Fg, W), Gy, (W), Py, (W)

— Search(y, ¢, t,): the server takes the encrypted index, the search token and the
ciphertexts of documents and return the search related ciphertexts in the fol-
lowing way

a. Parse 7 as (7, T, T3) and return an empty list if 74 is not present in Tg.
b. Recover a pointer to the first node of the list by computing

(al,ai) = Ts[r1] @ 712

c. Look up (vq,1) = Ny := Ag[aq] and decrypt with 73 by computing
(idl,addrs (NZ)) =1 @ HI(T?)irl)

d. Fori > 2, decrypt node N; as above until a;,; = 0.

M. Hovsepyan 45

e. Let I = {id4, ...,id,} be the file identifiers revealed in the previous steps
and output {c;}; ;, i.e., the encryptions of the files whose identifiers were revealed.

2.3. Computationally Efficient Dynamic SSE

In the [11] another dynamic searchable symmetric encryption scheme is pre-
sented providing searching in constant time in the number of unique keywords
stored on the server. As usual each document M; is characterized with a pair
(id;,W;) where ID; is the document’s ID and W; = {w; ,w, ...} is a set of key-
words in document M; . For each document two keys are generated respectively ky
for encrypting a data M and k,, for encrypting a corresponding keyword. There is a
searchable representation S,, for the keyword w based on k,,. A trapdoor T, cor-
responds to a pair (w, k,,). Search (T, ,S,,) outputs 1 if we W. Let ID; be a
document identifier (ID) and let I, ={ID; |w € W; }. The construction of the sear-
chable representation for each keyword w is:

SW: (fkf (W)' m(lw)! R(W))

Where fiis a pseudo-random function that identifies the searchable repre-
sentation of w, k¢ is k,, or a part of it, m(.) is a masking function and R(w) is a
function that keeps some information for unmasking I,,. Each time the client wants
to retrieve the encrypted data items containing keyword w a trapdoor
T =(fi, (w),R’(w)) is sent to the server. The server first searches for fi, (w) and if
it occurs, the associated masked m(l,,) is unmasked using R(w) and R (w). The
server then sends the encrypted data items whose 1Ds occur in I, to the client. The
key idea of the second approach is to deploy a hash chain. A hash chain of length N,

HN (o) = H(H(....H(@) ...))

is constructed by applying repeatedly N times a hash function H(.) to an initial
seed value a. Let I;(w) be the set of IDs showing in which metadata item w oc-
curs, which have been added to S, in the i-th updating. The searchable repre-
sentation of w after updating i times is:

Sola (W) = (fkf W), E, iy (W)), H (ks (W), «. . B,y (I (W))»H’(ki(W))>

46 Review of Searchable Encryption Algorithms

where k;(w) = HN-—etr (w| |k) and ctr is a counter which is incremented each
time the storage is updated. The counter is stored in the client side. This con-
struction encrypts each list I;(w) with a unique secret key k;(w) such that the
server is able to compute the encryption key of previously added lists k;_; (w)
... k1 (w) given the encryption key of k;(w), by traversing the hash chain for-
ward, but the server cannot compute k;,, (w) since it cannot traverse the chain
backward. Based on above explanation assuming that S,,; (w) has already been
updated j times, the next updating of S;;4 (w) is implemented as follows:

For each unique word w € W

—construct [1 (w) = {ID; |[w € W} }

— Increment the counter ctr = ctr + 1,

— Compute the secret key k; 1 (w) = HN=etr (w | | k),

—Encrypt Ey; ; w)([i+1(W))

— Send to the server the tuple frs (w),Ekm(W)(Ijﬂ(w)),H (kj+1(w)) which

adds the received tuple to S,y (w).

Then the Trapdoor in fact is T, =(f; , (w), HN " w| k)= (T,,T,) and a
search (S, T,) is implemented as follows: Given the trapdoor and the searchable
representation S, search of T; and if T; occurs, compute H (T,), if H(T,)=
H (k;(w)), decrypt I; using T,, otherwise keep computing T, = h(T,) until
H'(T,) = H (k;(w)). After k;(w) is computed, repeat the same procedure to com-
pute the previously added list of document identifiers. Having decrypted
I;(w), ... I; (w) send the documents whose IDs occur in the lists.

2.4. Dynamic Searchable Encryption in Very-Large Databases:

In [10] a dynamic searchable encryption scheme is presented which efficient-
ly searches the server-side database of tens of billions rows. A basic algorithm is
constructed based on a generic dictionary construction and two other optimized
versions are built on top of the basic algorithm. Here we cover the basic construc-
tion and refer the interested reader to the original paper for details of the algo-
rithm’s next extensions.

Following to the formalization of Curtmola et al. [5] the database DB =
(id;, W;) is a list of identifier /keyword-set pairs where id; € {0,1}* and W; €
{0,1. W = UL, W;. And for a keyword w € W we write DB(w) for {id; : w €
ID;}.

M. Hovsepyan 47

A dictionary implementation D consists of four algorithms Create,
Get, Insert, Remove. Create takes a list of label-data pairs {({;, d;)}, where each
label is unique, and outputs the data structure y. On input y and a label [;, Get(y, [;)
returns the data item with that label. On input y and (I, d), Insert(y, (I, d)), outputs
an updated data structure that should contain the new pair (I, d).

Let D = (Create, Get, Insert, Remove) be a dictionary implementation, F
be a variable-input-length PRF, and 2 = (Enc, Dec) be a symmetric-key encryp-
tion scheme. Below we detail the database setup and search algorithms.

SETUP THE DATABASE

— K « {0,1}* and allocate the list L.

—Foreachw e W

— K; = Enc(K, 1||w) and K, = Enc(K, 2||w)

— Initialize the counter ¢ = 0

—Foreach id; € DB(w)

l « F(Ky,¢);, d « Enc(K,,id;); c++
Add (1, d) to the list L in lexicographically order.
—Sety = Create(L)
— Outputs the user key K and y.
SEARCH THE DATABASE
Client: On input (K, w)

—K; = Enc(K, 1||w) and K, = Enc(K, 2||w)

— Send (K3, K;) to the server
Server: On input (K3, K5)

—For ¢ = 0 until Get returns NULL

d « Get(y, F(Ky, c))
id « Enc(K,,d)

— Return the list of revealed ids.

This scheme is made dynamic with a simple trick of using a dictionary y*
which is initially empty and to which a pair (I,d) is added with each keyword ad-
dition. Search for a keyword w is performed by the server by first searching y as in
the static case, then re-computing all labels corresponding to w iny™. The latter
labels are computed using a w-specific key provided by the client and a running
counter. Note that addition operations involving keyword w require the client to
know the current value of the w-specific counter. For this, the scheme maintains a
dictionary & associating each keyword that was ever added via edit+ or add with its

48 Review of Searchable Encryption Algorithms

current counter value. § can be stored at the client or stored at the server and re-
trieved by the client for performing update operations. Next we define the method
of allowing adding new documents to the index.
UPDATE THE DATABASE:
—~Set Kt « F(K,3)
—Foreachw e W
—Kit = Enc(K*,1||w) and K = Enc(K™,2||w)
—c « Get(5,w) ifc=NULL then c = 0.
—Setl « F(K{",c); d « Enc(Ky,id;); c ++
— Insert (w,c) into & and insert (I,d) intoy™.
The search now implies the searching in both y* and y dictionaries. The
server gets (K, K,, Ki, K3 and performs the following actions.

—For ¢ = 0 until Get returns NULL —For ¢ = 0 until Get returns NULL
d « Get(y,F(Ky,¢)) d « Get(y*,F(K{',0))
id « Enc(K,,d) id « Enc(Kf,d)

This scheme can allow delete operations over the secure index only by keep-
ing the revocation list of all deleted file ids and next check each search result
against the revocation list.

3. Public-Key Keyword Search

In [12] the problem of searching in public-key encrypted data is studied. The
main use case of this scheme is considered the email gateway which needs to check
emails for specific words, such is «urgent» to route them accordingly. But the mail
gateway should not learn anything more about the encrypted messages. Assuming
Bob wants to send an encrypted email to Alice. To do so, Bob encrypts the email
with usual public-key encryption scheme and then appends the searchable
encryption of each keyword. To send a message M with keywords wy, w,, ...wy,
Bob sends the following:

Ep (M |PEKS(Apup , 1)l ... || PEKS(Apyp , wy)
Here A,,;, is the public key of the recipient Alice. The point of this encryption
is that Alice can give the email gateway a special trapdoor T,, so the gateway can

M. Hovsepyan 49

check whether the encrypted email contains the word w or not without learning
anything more about the encrypted message or the certain word w.

According to [14], the Public-Key encryption scheme with keyword search
(PEKS) is the defined as a tuple of following algorithms:

— KeyGen(s): Takes a security parameter s and outputs the public/private
key pair Apyp , Apriy -

— PEKS(Apu, ,W): For the public key A,,;, and the word W produces the
searchable encryptio of W.

— Trapdoor(Ap,, W): Given Alice's private key A,,,, produces the
trapdoor T,, for the word W.

— Test(Apup,S,Ty): Given the Alice's public key Ap,,, a searchable
encryption S = PEKS(Ap,,,W") and the trapdoor Test(A,yp,S, Ty):
Trapdoor (Ap,, W) , outputs 'Yes', if 'W=W", or 'No' otherwise:

The constuction of PEKS scheme is based on bilinear mappings defined as

e: G; x G — G, between two groups G;, G, of prime order p where

1. Given g, h € G, , there is an efficient way to compute the value e(g, h) €
Gy

2. For any integer x, y € [1,p] itistrue that e(g*,h”) = e(g, h)™

3. If g is the generator of Gy, then the e(g, g) is the generator of G,

Two hash functions H;:{0,1}* - G; and H,:G, — {0,1}/°97 are used as

building blocks. The definition of scheme is described as follows

— KeyGen(s): The input security parameter determines the size p of the
groups Gy, G,. The algorithm picks a random a « Z, and a generator g of
Gy. Outputs the A, = [g,h = g®] and Ay, = a.

— PEKS(Apy,,W): for the given word W first computes

t = e(H{(W),h") € G, for arandom r € Z, and then outputs the value
S = PEKS(Apup, W) = [g", Hy(t)]

—Trapdoor (A, , W): Outputs Ty, = Hy(W)* € Gy

— Test(Apy, S, Tw): S =][g" Hy(e(Hy(W),h"))] = [4,B]. Checks
if Hy(e(Ty,A)) = B.

The correctness of this scheme comes from the fact that H,(e(Ty,A)) =

H, (e(Hy(W)®, ")) = Hy(e(Hy(W),g))" and B = Hy(e(Hy(W),h")) =
H2e1 W, gar=2e/1 W, g ar

It is proven that this searchable encryption scheme is secure against a chosen

keyword attack in the random oracle model assuming the BDH is intractable, mean-

50 Review of Searchable Encryption Algorithms

ing that given the generator g of G, and three values g%, g, g° € G, any poly-
nomial time algorithms have a negligible advantages in computing the value

e(g,9)"° €G,.

4. Multi-Keyword Searchable Encryption Schemes

In the multi-key setting [13] there are set of users each having a set of docu-
ments and a server which stores the encrypted documents. Each user has access to a
subset of documents. The user can create a new document and give access to that
document to another users by sharing with them the decryption key.

The functionality goal is to allow a user to search a word over all the
documents he can access, say n documents, even if those documents are encrypted
under different keys. No te that the user has access to all the keys for these n
documents, but the user should only give one search token to the server, instead of n
tokens. A multi-key encryption scheme is a tuple of the following algorithms -
(Setup, KeyGen, Delta, Token, Enc, Adjust, Match):

— Setup(): Takes the security parameter and returns the system wide params.

— KeyGen(params): Takes the system parameters and returns a secret key

such as the document encryption key or user's public key.

— Delta(kq, k;): Takes two keys and returns the delta.

—Token(k,w): Takes a keyword and a key and returns the search token tk.

— Enc(k,w): Takes the keyword and key and outputs the encryption ¢ of the

word.

— Adjust(tk,A): Takes a search token tk = Token(k,w) and a delta

A= Delta(kq, ky)and returns a search token tk'
— Match(tk, c): Takes a search token and encrypted document ¢ and outputs
a bit b.

The key of user i is denoted with uk; , and the key of document j with k;.
Consider that a user, say Alice, (with key uk,) has n encrypted documents at the
server, and each is encrypted under a key k; for j=1...n. Alice wants to search
for a word w over all the documents she has access to, so she uses ukA to compute
a token for a word w. In order to allow the server to match the token against words

encrypted with k4, . . ., k,,, Alice gives the server some public information called
delta. Alice provides one delta per key k; , denoted Ay k- The server can

use Ay, k- toconverta search token under key uk, to a search token under k; , a
process we call adjust. In this way, the server can obtain tokens for word w under

M. Hovsepyan 51

ki, ..., k; while only receiving one token from Alice, and then performing a
traditional single-key search with the new tokens.

The constuction of the multi-key searchable encryption scheme is based on
the asymmetric bilinear mappings defined as e: G; x G, — G between groups Gy,
G,, Gy of prime order p where

1. Given g,h € G;xG, , there is an efficient way to compute the value

e(g,h) € Gy
2. For any integer X, y € [1,p] itis true that e(g*, h”) = e(g,h)*
3. If g is the generator of G; and h is the generator of G,, then the e(g, h) is
the generator of G
Let H:{0,1}" = G; and H:GrxGr — {0,1}" be hash functions. The multi-key
search scheme is defined as follows:
— params « Setup(1%): Returns the system parameters
(v, Gy, G2, G, €, 91, 92, 91)-

—k « KeyGen(params) Returns k « Zy

— A« Delta(ky, k) : Returns A= g,*2/k1 € G,

—tk « Token(k,w) : Returns tk = Hw)* € G,

— ¢ « Enc(k,w) : Select r « Gy and outputs ¢ = (r, H,(r, e(H(w), g2)*))

tk' « Adjust(tk,A) : returns tk' = e(tk,A) € Gy

—b « Match(tk',c) : Assuming ¢ = (r, h) outputs 1 if H,(r,tk") =h,

else 0.

The correctness of this scheme comes from the following observations: ha-
ving params « Setup(1%), k; « KeyGen(params), k, « KeyGen(params),
A< Delta(kq,ky), tk < Adjust(Token(k;,w),A) we can see that tk =
e(Hw)"), g,*2/M1) = e(H(w), g2)*2 and Hy(rtk) = Hy(r,e(H(w), g2)*?)
meaning Match(tk,Enc(kl,W)) = True.

5. Conclusion

Searchable encryption is one of the most important cryptographic disciplines
under very active investigation nowadays. In this paper the recent searchable encryp-
tion algorithms are covered in details from three different settings exposing the most
efficient constructions which have found different practical applications already.

52 Review of Searchable Encryption Algorithms

REFERENCES

1. Song D. X., Wagner D., and Perrig A., Practical techniques for searches on encrypted
data: a. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

2. Goldreich O. and Ostrovsky R., Software protection and simulation on oblivious RAMs.
Journal of the ACM, 43(3): 431-473, 1996. 2

3. Bellare M. and Rogaway P., Random oracles are practical: A paradigm for designing ef-
ficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62-73, Fairfax, Virginia,
USA, Nov. 3-5, 1993. ACM Press.

4, Goh E.-J., Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216/.

5. Curtmola R., Garay J., Kamara S., Ostrovsky R., Searchable Symmetric Encryption: Im-
proved Definitions and Efficient Constructions. In proc. ACM Conference on Computer
and communication Security, pages 79— 88, 2006.

6. Cash D., Jarecki S., Jutla C.S., Krawczyk H., Rosu M.-C. and Steiner M., Highly-sca-
lable searchable symmetric encryption with support for boolean queries. In R. Canetti
and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS. PP. 353-373.

7. Kamara S., Papamanthou C. and Roeder T., Dynamic searchable symmetric encryption.
In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12. PP. 965-976, Raleigh,
NC, USA.

8. Kamara S. and Papamanthou C., Parallel and dynamic searchable symmetric encryp-
tion. In A.-R. Sadeghi, editor, FC 2013, volume 7859 of LNCS. PP. 258-274, Okinawa,
Japan, Apr. 1-5, 2013. Springer, Berlin, Germany.

9. Liesdonk van P., Sedghi S., Doumen J., Hartel P., Jonker W., Computationally Efficient
Symmetric Encryption. In Secure Data Management (SDM). PP. 87-100, 2010.

10. Cash D., Jaeger J., Jarecki S., Jutla Ch., Krawczyk H., Rosu M.-C. and Steiner M., Dynamic
Searchable Encryption in Very-Large Databases: Data Structures and Implementation.

11. Jarecki S., Jutla C., Krawczyk H., Rosu M.C. and Steiner M.,Outsourced symmetric private
information retrieval. In ACM CCS 13, Berlin, Germany, Nov. 4-8, 2013. ACM Press.

12. Boneh D., Crescenzo di G., Ostrovsky R. and Persiano G., Public key encryption with
keyword search. In Advances in Cryptology—-EUROCRYPT 04, volume 3027 of Lecture
Notes in Computer Science, pages 506-522. Springer, 2004.

13. Raluca A., Popa and Zeldovich N., Multi-Key Searchable Encryption. MIT CSAIL.
https://people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf

M. Hovsepyan

OB30P AJI'OPUTMOB IN®POBAHMUS, JOITYCKAIOIINX IIOUCK

M. OBcensin

Poccuiicko-Apmanckuii (Cragsanckuil) ynusepcumem
hovsepyan.mihran@gmail.com

AHHOTALIUSI

IuppoBanue, nomyckaroliee HOUCK JaHHBIX, II03BOJISIET TI0JIb30BATEITIO
XpaHUTh CBOU JIaHHBIC B HEHAJEXKHOW cpeje, HalpuMep, B 00IIenoc-
TYITHOM OOJIAYHOM XpaHWIHIIE, B 3aIIM(POBAHHOM BHIE, TEM CaMBIM HE
OTpaHWYHBasi BO3MOXKHOCTB TIOMCKA 3TUX HaHHBIX. [Ipu aTOM mpoBaiinep
XpaHIWIHIIA HE FIMEET BO3MO)KHOCTH YHTATh JaHHBIC, PE3YJIbTaThl IIOHC-
KOBBIX 3aIIpOCOB W JIa)KE€ CaMH 3aIpOChl. 3HAYUMOCTh TaKOW (DYHKITHO-
HAITBHOCTH PAacTeT B CBA3U C POCTOM HOMYJIAPHOCTH OOJaYHBIX XpaHU-
JMIL — TakuX, kak Dropbox u Google Drive, u, napamiensHO ¢ 3TuM,
Cpelny Hay4yHOTo COOOLIECTBA KPUNTOrpaduu pacTeT MHTEPEC K Hh3yde-
HHUIO 3TOTO BOIpoca. B MaHHOI cTaThe COACPIKUTCS KPATKHid 0030p U3-
BECTHBIX Ha ZlaHHLIﬁ JCHb aJIrTOPUTMOB HII/I(I)pOBaHI/Iﬂ, JOITyCKaromux
TMOHUCK C NPAKTHUYCCKU MPUMECHUMBIMH XaPAKTCPUCTUKAMH 1 IMOBCPXHO-
CTHBIM aHAJIU3 CUJIBHBIX U CJ'Ia6bIX CTOPOH 3TUX CXEM.

KawueBble ciaoBa: kpunrorpadus, obOlauHoe XpaHHIHINE, Oe3o1mac-
HBIH MHICKC ITOWCKA.

nravdnn, ¢tnsSuuarvuy UtenNuelrh UUoNoNrU
U. ZnJulithyut

Zuy-niuwlwl huduwyuupul
hovsepyan.mihran@gmail.com

uuonenkru

Npnuynn qunutugpdwy dbpnnubpp poyp b mwhu oquw-
gnpénnhtt wwhty hp nfpuyiibpp qunniugpjws Yepynyg ny
Junnwhbtih dhowjuypnud, htisyhuhp bt wdwwjht pug wywhng-
utipp, puyg Uhtiinyt dudwbwly httwpwynpnipnit B nnwhu
ogunmugnpénnhtt juwnwpl] widnwtg npnudwt gnpénnnipmil
wyn qunuiugqpus nydjuiubpnid: Cun npnid wdwuyghtt yu-
hngutph ubpybplbtpp sk Yupnn jupnwy ny ognugnpénnh
wnyjuubpp, ny tnyuhull npnuynn hwpgnidubpp: Ldwt $niul-
ghntwmpjut jupbnpmpnitp wdlk] B wdywjwhtt yuhng-
ubiph (Dropbox, Google Drive) dwpwnwpuyhtt jhpundwin qniqu-
htn U qhunipyul wyu &ninp vnwgh) E dks nipwnpnipnit hk-
nwqnuunnutph Ynnuhg: Uju hnpdusp ukpujugunid hpkihg
utpyuynidu huyinth jhpwowlwt npnynn qupnbwgpdub Ub-
panubkph jupd wdthnthnd, hisybu bwb wyy dkpnnubph pny b
nidtin Ynnutph hywughly wwhg:

53

54 Becmnux PAY Ne2, 2015, 54-73

YK 62-50 Mocrymuna 25.08.2015r.

STOCHASTIC DISCRETE EVENT SIMULATION MODEL
FOR ESTIMATING PRODUCT DEVELOPMENT TIME

A. Mkrtchyan

Massachusetts Institute of Technology Cambridge, MA 02139, USA
armen@mit.edu

SUMMARY

Efficient development of products is critical to the success of many
firms. The literature on product development often discusses the see-
mingly emergent nature of product development processes in various
settings and organizations but does not adequately address the lack of
planning tools within these organizations. This paper aims to fill the
gap in tool support for the planning process by developing a discrete
event simulation model to compute lead times of product development
projects. The model explicitly captures various tasks, teams, and de-
velopers within a distributed product development setting. This work
captures the iterative nature of the product development process and
specifies the contextual relationships among tasks and among develo-
pers. The model was validated on a previously collected data set, as
well as using data from an ongoing project with a small-sized software
firm. The model has been encapsulated into a tool using an easy-to-use
desktop and iPhone/iPad applications.

1. Introduction

The economic success of most firms depends on their ability to identify the
needs of customers and introduce new products over time [1], [2]. The goal of
product development (PD) process is to create these products. PD is defined as the
set of activities beginning with the perception of a market opportunity and ending in
the production, sale, and delivery of a product [3]. In today’s environment of rapid-
ly evolving customer preferences, speed and flexibility in developing new products
is even more important [4].

Furthermore, geographically distributed PD is increasingly becoming more
popular [5], [6]. Various researchers have noted the importance of developing prod-
ucts in distributed fashion (e.g., [7]) and with the emergence of reliable electronic-
based communication media, firms are embracing distributed PD. Sproull and Kies-

A. Mkrtchyan 55

ler [8] note that information technology (IT) reduces the dependence on traditional
face-to-face communications and creates “networked organization.” Hence, this
paper investigates and presents a simulation model to enhance disctributed PD
processes.

2. Model Description

This model employs a queuing-based discrete event simulation (DES) to es-
timate the lead time of product developmet projects. While in some circumstances it
is possible to formulate PD process as a mathematical optimization problem, the
complexity of real-world PD processes makes raw optimization computationally
unviable. In DES systems utilized in this paper, time advances in discrete steps de-
fined by elapsed time between events [9], hence, components of the system do not
need to be scanned during times between events [10]. To build the DES model, the
the main attributes affect PD processes were considered (discussed further by krt-
chyan and Srinivasan [11]). These attributes along with the requisite modeling va-
riables are shown in Table I.

Table I: PD attributes and corresponding modeling variables.

PD Attribute Variables

— Task duration, T}

— Task type & task assignments, T,

— Number of teams, Ng

Team structure — Number of developers per team, N7
— Team assignments, Fj,

— Developer work hours, Dy,

— Developer work type, D,

— Rework impact, Kif;l'rew"rk .

j,rework
R i

Task structure

Developer flexibility

Rework .
— Rework probability,

— Task dependency, T(i, j)
— Task overlap, 0(i, j)

— Productivity, Pp

— Learning curve, L, & L™
Team coordination — Coordination cost, ASiCT”SS

Task relatedness

Learning

This DES model has four interconnected components as shown in Figure 1.
First, the task model describes the initial tasks, including task types, duration, and

56 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

dependency between tasks. Next, the task rework model represents the rework
structure. This includes rework probabilities, i.e., probability that one task causes
rework for another task, and rework impact, which indicates rework duration. The
third component is the developer model, which describes attributes pertaining to
developers. These attributes are the number and type of developers, team assign-
ments, productivity level, learning curve, developer priority, coordination cost, and
work hours. The last component is the queue, which stores the tasks before they are
serviced by the developers.

________ L - - Developer] [Developer) ----- PDeveloper]
Task model I f 2 k
.

Type P—
= Duration

I
- I

« Developer priority | >:|]:[[|]
+ Task dependency i
I
I

+ Sequential and parallel Y [
overlap op icpel) - Pevelon
_______________ |

| Task rework model 1
I+ Rework probability I— y T oo e T s s T 1
+ Rework impact 1 | Developer model
________________ 1+ Number & type of developers
I Team assignment
: + Productivity level
I
I
I

- —-—-—-—-—===

+ Leaming curve
Coordination cost
Work hours

Figurel: High-level representation of the model.

Queuing-based DES models have been used extensively in a variety of do-
mains, such as manufacturing, human supervisory control [12], hospitals [13],
finance [14], and air traffic control [15]. DES models have also been successfully
used to model different aspects of PD. For example, Adler et al. [16] utilized DES
technique to model workflow management, while Browning and Eppinger [17]
modeled the impact of process architecture on PD schedule. The variables identified
above were incorporated into the DES model, which is described in the next sec-
tions.The model has been implemented both in the form of a desktop application
running on Mac OS, as well as an iPad application. A sample screenshot of the Ma-
cOS application, called SimLink™is shown in Figure 2.

2.1. Model Structure

All of the model components are described below, along with input data re-
quired to run the model.

A. Mkrtchyan 57

2.1.1. Tasks

There are two general categories of tasks. The first category represents the in-
itial tasks that need to be completed. These are the tasks that the manager thinks
need to be completed for a given project to succeed. The next category of events
represents the tasks that are the result of the rework caused by incomplete informa-
tion at the time of initial task breakdown and planning.

ece & = 08 Apr_24_Browning copy____ copy.pdsm (&3]
Devealoper 1 & X
Team } Team 1 Types 1 Ad
Devsloper 2 & X
Team } Team 1 Types 1 A511
Developer 3 £ X
Team } Team 1 Types) A512
Developer 4 £ %
Team ¥ Team 1 Types 1 A531
Devsloper 5 £ x
Team } Team 1 Types } A521
Devsloper 6 & X
Team } Team 1 Types } A522
Developer 7 £ X
Team) Team 1 Types) A5341
Developer 8 £ %
Team ¥ Team 1 Types) A532
Developer 8 £ x
Team } Team 1 Types] AS33
Developer 10 & X
Team } Team 1 Types 1 A5342
Developer 11 £ X
Team) Team 1 Types) A5343
Developer 12 £ %
Team ¥ Team 1 Types) A5344
Developer 13 £ x
Team } Team 1 Types } AS4
Devesloper 14 & X
Team } Team 1 Types 1 A8

@ Add Developer S0 Add Team 4% Manage Teams

Figure 2: Sample screenshot of SimLink™ application.

Initial tasks

Initial tasks are pre-programmed in the system. Each task has its associated
type and duration. When compiling a list of initial tasks, task dependencies are also
specified. More specifically, the degree to which tasks can be processed in parallel
and whether starting one task is dependent on finishing another are specified.

58 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

Rework generated tasks

The iteration of design/development tasks is critical to any PD process [18].
While product quality generally improves with each successive iteration, it also
contributes significantly to the cost and completion time of a project [10]. Much of
the rework is caused by changes in information and/or assumptions upon which
they were initially executed. In this model, rework is taken into account using a de-
sign structure matrix (DSM) methodology to represent the probability that a rework
is required, as well as the impact that the rework will have. These concepts are ex-
plained in more detail in the Arrival Processes and Service Processes sections.

2.1.2. Arrival Processes

Each task in a DES simulation has associated interrarival time, which describes
the arrival of successive tasks. Arrivals can occur at random times or at scheduled
times. When at random, the interarrival times are usually characterized by a probabili-
ty distribution [9]. The arrivals can also be either independent or dependent. In this
model, arrivals can be dependent based on when other tasks are serviced, which can
be of the same or have a different task type. To model the dependency of tasks, in-
formation flow between tasks is specified through a DSM. Servicing a task can trig-
ger other tasks based on the dependency DSM, which is discussed in the next sec-
tions. The newly triggered tasks subsequently enter the queue and are later serviced
according to the queue discipline. Servicing a task can also cause other tasks to be
unblocked, i.e., these tasks are allowed to leave the queue and be serviced. To model
the blocking/unblocking [19], the flow of certain tasks in the queue is temporarily
stopped until a condition is met (e.g., another task is serviced). The concept of depen-
dency is extended in this model to account for tasks that may be unlocked after a cer-
tain percentage of a different task is finished, without waiting for the task to be fully
completed (e.g., dependency of initial tasks, as described below).

Initial task interarrival times

Interarrival time of initial tasks is not explicitly modeled because availability
of developers and dependency between tasks dictates when the initial tasks are ser-
viced. To model dependency between tasks, information flow from task i to task j
is specified through a dependency matrix D. D(i,j) is zero when there is no infor-
mation flow from task j to task i and the two tasks can be processed in parallel.
D(i, j) is one when there is information flow from task j to task i and the two tasks
are either processed sequentially or there can be some overlap. To specify the level

A. Mkrtchyan 59

of overlap between tasks j and i, an overlap matrix O is used. O(i,j) = b implies
that task i can be serviced before task j has been completed and the level of overlap
is T(j) - b, where T'(j) is the initial duration of task j.

Rework task interarrival times

Arrival of tasks associated with rework are modeled using a rework proba-
bility matrix R{q’rew"rk , Which indicates probabilities that task j causes rework for

task i during qth iteration. More specifically, the value of R/ implies
q

whether rework is caused for task i after qth iteration of task j, i.e., the value of
R{q’re‘”"rk is the success probability of the Bernoulli distribution.

2.1.3. Service Processes

Similar to arrival processes, service processes can also be either constant or
of random duration. Also, different tasks can have different service times (or proba-
bility distributions).

Initial task service times

To indicate the duration of initial tasks, the model allows product/project ma-
nagers to input their pessimistic(p), likely (1), and optimistic (o) estimates. Spe-
cifically, a time duration matrix T;(j) = (p,l,0) uses latin hypercube sampling
(LHS) method to generate expected values for the duration of task j. Latin hyper-
cube sampling has been shown to have a better convergence rate compared to a
more popular random sampling method [20], [21]. Since the estimate of initial ser-
vice times of tasks is usually carried out by project managers based on their prior
experience, this model captures the 10th percentile of the expected duration, the
mode and the 90th percentile of the expected duration of a task as(p, [, 0). It has
been shown that the 10th and 90th percentiles of the expected duration are easier for
humans to estimate than the Oth and 100th percentiles of the probability distribution
function (PDF) of expected durations [10].

For each task j, its pessimistic, likely and optimistic duration estimates can
be used to generate a PDF fz (£). Specifically, given the 0" (a) and 100" (b)

percentiles for task durations, as well as the mode (¢), the PDF of a triangular dis-
a: —oco< a< oo

tribution can be constructed. In fact, given b:a<b , One can write the
ccas<c<bh
PDF of a triangular distribution as follows.

60 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

(Ofor§i<aor§{>b
| 2¢-a
f:§)={(b—-a)c—a)
2(b=%)
(b—a)(b—c)

fora<é<c

Jforc<éEZb

To find a, ¢, b from known estimates of p, [, o, the following system of equa-
tions has been derived by Mkrtchyan [22].

(1+2)?2%+(1+w)?=10

1
l_oz(z+1)=mw(1+w)

Using a publicly available library for numerical analysis and taking into ac-
count initial conditions (i.e., z > 0,w > 0), the values of z and w can be computed
for any estimates of p,l,0. Next it can be shown that a = o —%(l —o0) and

b=p+=(p—1), while c = I[22].
Latin hypercube sampling (LHS)

To generate task duration samples when running the simulation model, the
LHS method is used. LHS is a type of stratified sampling [21], [23] and it operates
the following way when sampling data for K tasks. The range spaces for each com-
ponent of &, i.e., &,&,, ..., & is split into M disjoint intervals (also known as stra-
tas) on the basis of equal probability size, where M is the number of simulation ite-
rations. In this case, each disjoint interval has a probability size of 1/M. One value
from each interval is selected randomly. Hence, M values are obtained for each
component of &. Lastly, M values from &; are randomly combined with M values of
&, &3, ..., & to form MK-tuples. The set of K-tuples is also known as Latin hyper-
cube sampling. Therefore, for given M and K, there exist (M!)X~1 interval combi-
nations for a Latin hypercube sampling. Furthermore, compared to random Monte
Carlo sampling method, LHS has significantly smaller sampling error of

0(1/N)[24], [25]., while the sampling error of Monte Carlo is O (1/\/N> where N

is the number of samples [26]. This means that the sampling error decreases gqua-
dratically faster in the case of LHS.

A. Mkrtchyan 61

To accomplish the above-described process, an easy to implement method
has been proposed, which uses inverse cumulative distribution function (CDF) [27],
[28]. First, the interval [0,1] is divided into M intervals. Next, the midpoint of each
interval is determined. Afterward, using inverse CDF, values corresponding to task
durations are extracted. Specifically, for a triangular distribution, random variates
can be generated as follows knowing the value of v € [0,1].

£=a+vb-a)(-a), When0<v<b—a

l—a

E=b—yA-v)(b—a)(b—1), when p
M samples are generated this way for each component of &, which are used to
specify task durations for K tasks during M simulation runs. Because this me-
thod chooses the midpoint for each of the M intervals, the method is referred to
as median Latin hypercube sampling.

<v<l1

Rework service times

Rework service times are modeled as fractions of initial service times. For
example, if task i requires a rework, its duration is modeled as a fraction of the ini-
tial task, i.e, 57" ework =k[:w"rk - Sinitial \where simitial s the initial duration of task
i and k[qe"”"rk is the fraction of work that needs to be reworked for task i during gth

iteration. The values of k{qew"r" are extracted from a three-dimensional matrix

Ki’;rew"rk , which also includes information about which task (j) causes rework for

task i during gth iteration.

2.1.4. Factors impacting service time

While service times are generally extracted from a probability distribution
function, they can be further impacted by a variety of factors. Some of the major
factors impacting service times are the learning curve, individual developer perfor-
mance variations, and coordination cost.

The learning curve measures a characteristic of a task when it repeats. This
model assumes that the duration of taskidecreases by L; percentage every time task
i (or a portion of it) repeats until reaches some L7***, which is the maximum possi-
ble gain from repeating task i.

Another factor that can impact the service time is the individual differences
between developers. More specifically, varying levels of developer experience,
knowledge, and commitment levels can impact their performance, which in turn

62 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

impacts task service times. To take this into account, the model allows the project
manager to account for performance differences by specifying the performance lev-
el for each developer. Specifically, the model assumes a default performance level
of 1. If a developer is assumed to have better than average performance, the manager
can increase the performance level by increasing the number, e.g., a developer with a
performance level of 1.5implies that tasks will be completed 50% faster compared to
a developer with a performance level of 1.

Lastly, the model also takes into account coordination cost between deve-
lopers. The coordination cost refers to the amount of extra time that one developer
needs to get accustomed to a task that another developer had been working on. The
coordination cost is assumed to be zero for the same person, i.e., when a developer
continues his own work there is no extra coordination cost that should be taken into
account. Furthermore, the coordination cost is higher for developers that work in
different teams and/or in different sites and is generally lower for developers work-
ing side by side in the same team/site. The model accounts for the coordination cost
by adding AS{™SSto the service time of taskiwhen a developer from a different
team previously worked on the same task. In this case, ASS™SS is known as the
cross-site coordination cost for task i.

2.1.5. Team Structure

To account for various team structures and their effect on product develop-
ment process, the model takes into account the following factors.

Developer types

Developer types can be entered in the model, which is used to allocate tasks
from the queue. Since all the tasks have their appropriate types, it is required that all
task types have at least one matching developer with the same type. Otherwise, a
task will never be serviced, if a developer with the same type does not exist.

Number of developers & priority levels

Developers can be of different type of they can have the same type. If de-
velopers have the same type, their priorities can be different. More specifically, two
developers can be structural engineers but if one of them has a higher priority, a
structural engineering task will be allocated to the developer with the higher priori-
ty, if he/she is available.

A. Mkrtchyan 63

Work hours

Different teams can have different work hours in the model. This is especially
useful when modeling a distributed product development process that includes
teams in multiple times zones/countries. Knowing work hours of different teams
helps take into account task distributions between developers working in different
time zones, as well as modeling coordination cost between developers.

2.1.6. Queue

Queue serves as a temporary holding place for tasks before developers ser-
vice them. However, besides serving just as a storage for the tasks, the queue has a
discipline, which describes the logical ordering of tasks in a queue. It determines
which task will be serviced first when a developer (server) becomes available [9].
There are numerous queue disciplines (e.g., first-in-first-out, service in random or-
der, shortest processing time first) that can be implemented in a DES model. In this
model, service according to priority queue discipline is implemented, which allo-
cates highest priority task to the first available developer of the same task type (with
the highest priority).

2.1.7. Servers/Developers

The developers in this model represent the servers of a queuing based DES
model. Since developers can work simultaneously, they can be viewed as N parallel
servers, whereN is the number of developers/servers. Nonetheless, it should be
noted that these servers have varying characteristics (e.g., performance ratings,
types of tasks they can service, work hours) and they do not always have to work in
parallel. For example, if two developers work on a project that consists of two de-
pendent tasks of different types, then one developer has to wait until the other de-
veloper finishes the task. This occurs despite the fact that both developers/servers,
in theory, can work in parallel. Another important characteristic that describes the
servers are work hours. In this model, the servers only become available during
work hours and are inactive otherwise.

3. Model Outputs

The model is able to capture a variety of metrics that are useful for analyzing
product development process. Specifically, being a queuing-based DES model, it is
easy to capture long-run measures of performance of this queuing system. This me-

64 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

trics are the following: total and average time spent in the gqueue, total and time-
average number of tasks in the queue, utilization of each server. Besides these DES
metrics, the model also captures the total time it takes developers to complete all the
tasks.

3.1. DES-based metrics

The main steady-state DES-based metrics are (a) the total and average time
tasks spend in the queue, (b) total and time-average number of tasks in the queue, (c)
average utilization and utilization of each server/developer. In this model, from the
steady-state measures mentioned above, utilization can be used as a measure of de-
veloper workload. It is calculated as the ratio of the time the developer is busy servic-
ing tasks divided by the total duration of the simulation. For a single server queuing
system, the long run server/developer utilization (p) is equal to the average event ar-
rival rate (1) divided by the average service rate (u).

A

p==
u

For the queuing system to be stable, the arrival rate must be less than the ser-
vice rate, i.e., 1 < u. If the arrival rate is greater than the service rate, then p = 1. In
real-world situations, this can happen when developers have more tasks than they
can service. One way to alleviate the saturation of servers is to increase the number
of developers. Since real-world PD projects usually have multiple developers work-
ing in parallel, the notion of average developer utilization can also be computed,
i.e., the simple arithmetic mean of the developers’ utilization.

In this model, average task wait time in the queue is also calculated. To find
the average time tasks spend in the queue, we define W;¢, W2, ..., W? to be the time
each task spends in the queue, where N is the number of arrivals during [0, 7].
Hence, the average time spent in the queue p(levr event will be:

1
o= 2,

As N — oo, W, = wy, Where wy, is the steady-state time spent in the queue.
For stable queuing systems, w, must be bounded, otherwise wait times will grow
indefinitely.

Similarly, let 7, denote the total time during [0, 7] in which the queue con-
tained exactly u tasks. The time weighted average number of tasks in the queue is
defined by:

A. Mkrtchyan 65

T
L,= %zuzlng = %f Lo(t)dt
AS T > o0, iQ - Lo, where Ly is the Iong(zrun time-average number of tasks
waiting in queue.
3.2. PD specific metrics

Besides these DES metrics, the model also captures the total time it takes de-
velopers to complete all the tasks. Note that due to the ability to process tasks in
parallel; the total time to service the tasks is generally less than the sum of times
each developer spends on servicing tasks allocated to him/her. Assuming 7 indi-
cates the time when the last task in the queue was serviced by a developer during
gth run of the model, the following metrics are calculated:

— Minimum project completion time: t,,,;, = ming(rf).

— Maximum project completion time: 7,,,, —max, ().

— Average project completion time: 7, = %Zgzlrf, where G is the total

number of simulation runs.

— Standard deviation of project completion time: 75 = J%Zgzl(ff - T,)2.

— Median value of project completion time:
Tmed = valueoft,eq forwhichP(X < Tpeq) = P(X 2 Tpeq) = %

where isX is the random variable representing project completion time after
each simulation run.For each simulation run g, 75 is defined as the time spent
by developer D on servicing tasks.

The model is able to capture a variety of metrics that are useful for analyzing
the PD process. Specifically, being a queuing-based DES model, it is easy to cap-
ture long-run measures of performance of this queuing system. Moreover, the mod-
el also captures PD specific metrics.

4. Results

4.1. Unmanned vehicle development project

To validate the model, the SimLink™ application was tested on an existing
(also referred to as historical) data set gathered from industry. Specifically, Brow-
ning[18] collected information from Boeing on task durations, learning factors, task
relatedness, and rework.

66 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

Table 2 shows task duration estimates. It should be noted that in this case the
duration estimates represent the Oth percentile, mode, and the 100th percentile of a
triangular distribution, rather than the 10th and the 90th percentiles used in the
SimLink™ model. Also, in Browning’s work resource constraints are not accounted
for, hence the tasks can be processed in parallel to the extent allowed by task rela-
tedness. To incorporate this into the SimLink™ model, each task type has its desig-
nated developer that can process the task once it arrives in the queue.

Table 2: Task duration estimates for a UV project.

Durations (days)

Tasks 0 l p Learning
Ad 1.9 2 3 0.35
A511 4.75 5 8.75 0.2
A512 2.66 2.8 4.2 0.6
A531 9 10 12.5 0.33
A521 14.3 15 26.3 0.4
A522 9 10 11 1
Ab341 7.2 8 10 0.35
A532 4.75 5 8.75 1
Ab33 18 20 22 0.25
A5342 9.5 10 17.5 0.5
A5343 14.3 15 26.3 0.75
Ab5344 13.5 15 18.8 0.3
A54 30 32.5 36 0.28
A6 4.5 5 6.25 0.7

Next, task relatedness is specified through a DSM, which is shown in Table
3. The values of the DSM indicate information flow between corresponding tasks.
The super-diagonal elements indicate precedence relationships, while the sub-
diagonal elements indicate feedback relationships between tasks.

It should be noted that the overlap matrix O(i, j) is zero for this project, since
Browning did not collect information and it was assumed that partial task overlap
was not applicable.

A. Mkrtchyan 67

Similarly, both rework probability and impact matrices[18] were captured
and included in the model. After running the model N = 200 times, the SimLink™
results for project completion time are the following:

{ Average = 151.6 days
Standard deviation (S§D) = 15.9 days

Table 3: Task relatedness matrix for UV project.

2 3|4 |56 |7]8]9]10[11]12]13]14

1

2

3

4

5

6

7

8

9

10 1

11 11111
12 1

13| 1 1

14 1 1 1 1 1 1

The results are compared to Cho and Eppinger’s [10] modeling work, which
also utilizes DES simulation and uses Browning’s UV data set. Specifically, the
results from the previous (simpler) model were:

{ Average = 146.8
Standard deviation = 17.0

The results show that the SimLink™ model in a simple form is able to repli-
cate the results using a historical data set. Also, the PDF of project completion time
is positively (right) skewed (Figure 3), which agrees with the results from Cho and
Eppinger [10] and Browning [18].

68 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

GRAPH

Figure 3: The PDF of project completion time for UV project.

4.2. Mobile software development project

This project is concerned with revising an existing system to better support
the growing demands of a small firm’s corporate clients. At the time this firm used
Pivotal Tracker, an agile project management tool. Some of the information about
the project, such as the tasks and developers working on the project were extracted
from Pivotal Tracker. The rest of the required information was collected from a
team leader responsible for this project. Ommoka! McTOYHNK CCHIJIKH He HalIeH.
shows the tasks, their types, and duration estimates.

Table 4: Developer characteristics for mobile soft. dev. project.

Deve- | Skills/task types | Pruducti- | Learning Region | Typical work
loper vity level curve hours
— Games back end .) .
1 | API integration 0.75 0.2 Armenia |9:00-20:00
California,) .
2 |- Customer API 1 0.1 USA 20:00-06:00
] . California,))
3 |- APl integration 1.3 0.1 USA 20:00-06:00
— Customer API
— Advertisement .) .
4 back end 1.4 0.2 Armenia |9:00-20:00
— Games back end

Four developers were involved in this project. To be more precise, two de-
velopers from California and two developers from Armenia worked on the project
as a small geographically distributive software development team. The developers
had different performance levels, learning curves, and various skills. Table 4 sum-
marizes the main characteristics of developers, as well as typical work hours (indi-
cated in Armenian time).

A. Mkrtchyan 69

The remaining modeling parameters, such as task relatedness and rework ma-
trices are shown in Mkrtchyan’s work [22].
Before the project was complete, the simulation model was utilized to predict
project completion time. Moreover, the timeline was analyzed to identify opportuni-
ties to increase team efficiency and compare them with real world observations. The
results (Figure 4) show that model predictions for average project completion time
was 182.7 with SD of 25.84, while actual project completion time was 168 hours.
While actual results were within one SD of model predictions, lower actual project
completion time was mainly due to increased concurrency than what was accounted
in the model. Specifically, the overlap matrix, O(i,j) was specified as having all
zero elements (i.e., tasks that exchange information do not overlap), however, in the
real world developers collaborated more than anticipated by the PD manager and
some overlap between tasks was present. Still the estimated results were within one
SD of the actual project completion time.

Figure 4: Comparing actual vs. predicted project completion times.

200

180

180

< 170

_D

£ 160

3

& 150

5 140

* 130
120
110

100

Actual Estimated

5. Discussion

In general, three key areas for model applications were identified during the
development and validation process, which are discussed below.
— Setting schedule target is one of the main potential applications of the model.
PD managers can evaluate different scenarios and choose one that has an ac-
ceptable risk level of schedule overrun. The SimLink™ model can be used to

70 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

analyze only those PD scenarios that are feasible. For example, knowing how

many developers can potentially work on a project, the SimLink™ should be

utilized to evaluate only the scenarios that involve these developers, rather
than some theoretical schedule tradespace that includes imaginary developers.

— Process improvement is another potential application area. Specifically, the
model can help identify critical tasks that have significant impact on the PD
process. By paying more attention to these tasks and allocating sufficient re-
sources, the PD manager can improve overall PD process.

— Research oriented evaluation has also been identified as a potential application
area of the model. There are PD strategies that have been consistently dis-
cussed in the PD literature but are usually hard to implement. The model can
help quantitatively evaluate the impact of such strategies. For example,
preemptive iteration has been suggested to shorten PD completion time by
doing more iterations in the beginning of PD projects. While it is often risky
to attempt such a strategy, the model can provide a quantitative measure of
the expected reduction of PD project completion time.

Another example of a PD strategy that is hard to implement but easy to test
with the model is follow-the-sun PD process implementation. Such a strategy re-
quires setting up development activities in different time zones so that PD work can
be passed from one time zone to another and effectively continues for 24 hours.

6. Conclusions

In this paper a novel method for predicting distributed PD lead time was pre-
sented. The above-described method uses stochastic DES approach to generate
probability density functions of lead times. While lead times are one of the main
parameters that interest project and product managers, the model can be used to
analyze bottlenecks and optimize resources, conduct replanning activities, and im-
prove PD processes in place. Given the level of granularity of the model, to small
teams conducting PD activities. The modeling approach is valid for any PD process
that has one or more teams of developers, including both hardware and software
(and mixed) development projects. Furthermore, user-friendly Mac OS® and iOS®
applications were developed to allow rapid dissemination of the model and make it
easy for product/project managers to learn and use the model effectively.

A. Mkrtchyan 71

REFERENCES

1. Dougherty D. and Hardy C., Sustained product innovation in large, mature organizations:
Overcoming innovation-to-organization problems, Acad. Manage. J., vol. 39, no. 5. PP.
1120-1153, 1996.

2. Penrose E.T., The Theory of the Growth of the Firm. Oxford University Press, 1995.

3. Ulrich K.T. and Eppinger S.D., Product design and development, 5th ed. New York:
McGraw-Hill, 2012.

4. Takeuchi H. and Nonaka I., The new new product development game, Harv. Bus. Rev.,
vol. 64, no. 1. PP. 137-146, 1986.

5. Granstrand O., Hdakanson L. and Sjolander S., Internationalization of R&D-a survey of
some recent research, Res. Policy, vol. 22, no. 5. PP. 413-430, 1993.

6. Griffin A., PDMA research on new product development practices: updating trends and
benchmarking best practices, J. Prod. Innov. Manag., vol. 14, no. 6. PP. 429-458, 1997.

7. Ghoshal S. and Bartlett C.A., The multinational corporation as an interorganizational
network,” Acad. Manage. Rev., vol. 15, no. 4. PP. 603-626, 1990.

8. Sproull L. and Kiesler S., Connections: New ways of working in the networked
organization. MIT press, 1992.

9. Banks J., Carson J. 11, Nelson B. and Nicol D., Discrete Event System Simulation, 5th ed.
Harlow England: Pearson Education, 2014.

10. Cho S.-H. and Eppinger S., Product development process modeling using advanced
simulation,” 2001.

11. Mkrtchyan A. and Jayakanth S., Enhancing product development capabilities of SMEs: a
study in a less-developed country, presented at the 21-st International Product
Development Conference, 2014.

12. Mkrtchyan A.A., Modeling operator performance in low task load supervisory domains,
Massachusetts Institute of Technology, 2011.

13. Ceglowski R., Churilov L. and Wasserthiel J., Combining data mining and discrete event
simulation for a value-added view of a hospital emergency department, J. Oper. Res.
Soc., vol. 58, no. 2. PP. 246-254, 2006.

14. Boyle P.P., Options: A monte carlo approach, J. Financ Econ., vol. 4, no. 3, PP. 323—
338, 1977.

15. S. Kapralov and V. Dyankova, “Modeling a system with discrete events,” Comput.
Model. Simul. EMS 2012 Sixth UKSimAMSS Eur. Symp. On, pp. 167-172, Nov. 2012.

16. Adler P.S., Mandelbaum A., Nguyen V. and Schwerer E., From project to process
management: an empirically-based framework for analyzing product development time,
Manag. Sci., vol. 41, no. 3, pp. 458-484, 1995.

17. Browning T. and Eppinger S., Modeling impacts of process architecture on cost and
schedule risk in product development, Eng. Manag. IEEE Trans. On, vol. 49, no. 4. PP.
428-442, 2002.

72 Stochastic Discrete Event Simulation Model for Estimating Product Development Time

18. Browning T., Modeling and analyzing cost, schedule, and performance in complex
system product development, MIT, Cambridge, MA, 1999.

19. Balsamo S., Personé V. de Nitto and Onvural R., Analysis of queueing networkswith
blocking, vol. 31. Springer, 2001.

20. Chrisman L., Latin hypercube vs. Monte Carlo sampling, Lumina Blog, 23-Jul-2014.
[Online]. Awvailable: http: //blog.lumina.com/2014/latin-hypercube-vs-monte-carlo-
sampling/. [Accessed: 15-Nov-2014].

21. McKay M.D., Beckman R. J. and Conover W.J., Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code,”
Technometrics, vol. 21, no. 2. PP. 239-245, 1979.

22. Mkrtchyan A.A., Modeling distributed product development processes in small and
medium enterprises, Massachusetts Institute of Technology, Cambridge, MA, 2015.

23. Keramat M. and Kielbasa R., Latin hypercube sampling Monte Carlo estimation of
average quality index for integrated circuits, in Analog Design Issues in Digital VLSI
Circuits and Systems, Springer, 1997. PP. 131-142.

24. Aistleitner C., Hofer M. and Tichy R., A central limit theorem for Latin hypercube
sampling with dependence and application to exotic basket option pricing, Int. J. Theor.
Appl. Finance, vol. 15, no. 7, 2012,

25. Loh W.-L., On the Convergence Rate to Normality of Latin Hypercube Sampling U-
Statistics, Purdue University, Technical Report 95-2, 1995.

26. Koehler E., Brown E. and Haneuse S.J.-P., On the assessment of Monte Carlo error in
simulation-based statistical analyses, Am. Stat., vol. 63, no. 2. PP. 155-162, 2009.

27. Keramat M. and Kielbasa R., Modified Latin hypercube sampling Monte Carlo
(MLHSMC) estimation for average quality index, Analog Integr. Circuits Signal
Process., vol. 19, no. 1. PP. 87-98, 1999.

28. Wyss G.D. and Jorgensen K.H., A user’s guide to LHS: Sandia’s Latin hypercube
sampling software, SAND98-0210 Sandia Natl. Lab. Albug. NM, 1998.

CTOXACTHYECKAA MOJEJIb J1JI1 OHEHKW BPEMEHU PA3ZBUTHUSA
MPOJIYKTOB HA OCHOBE JIUICKPETHO-COBBITUMHOM CUMYJIALIUA

A.A. MKpTYSIH
AHHOTAIUA

DddexTuBHOE UCTIOIB30BAaHUE MPOIYKTOB MMEET OCOOYI0 Ba)KHOCTh
JUI YCHEIIHOTO pa3BUTHA MHOTHX ¢upM. B jmrepatype mo mpoasu-
XKEHHUIO MPOIYKTOB YacTO 00CYXmaeTcs, Ka3ajaoch Obl, MPUPOJa MPO-
IECCOB UX Pa3BUTHUA B PA3JIMYHBIX YCJIOBUAX U OpraHM3alUAX, HO HE
TOBOPHUTCS aJICKBaTHO 00 OTCYTCTBHU MHCTPYMEHTOB IUIAHUPOBAHUS B
CaMUX OpraHH3alusIX.

Ienpto naHHOW CTaTbU SIBISCTCS 3alOJIHCHHE MPOOCIOB MPHU IOJ-
JICPKKE MHCTPYMEHTOB C IIEJIBIO TNIAHUPOBAHUS M JIJIsI CO3JJAHUS MOJIe-

A. Mkrtchyan 73

Jell TUCKPETHBIX COOBITHH, a TakXe JIsl [MOCYeTa BPEMEHU ISl BbI-
TIOJIHEHHSI HOBBIX IIPOEKTOB. MoJienb B paMKax pacrpe/eiIeHHOH ycTa-
HOBKH Pa3pabOTKU MPOAYKTA THIATEIFHO (UKCHPYET pa3HbIC 3a/auH,
Tpynnsl ¥ pa3paboTyukoB. OTa mpoueaypa (UKCHPYET IMOBTOPSIO-
IyIOCsl IPUPOJY TMPOLECCOB HCIIONB30BAaHMS MPOIYKTOB U YKa3bIBaeT
Ha KOHTCKCTyaJbHbIE COOTHOIICHUS MEXKIY 3amadyaMi U pa3paboTdu-
KamMd. MoJienb ¢ IOMOIIBI0 UCTIONIB30BaHHS JaHHBIX M3 TEKYIIHX MPO-
eKTOB ObliIa MOATBEPXKACHA Ha paHee COOPaHHOM Habope NaHHBIX, TaK
ke, KaK U Y B3AThIX MalbIX (upM mporpaMMmHOro odecnedenus. Mo-
Jienb peodpa3oBaHa B MHCTPYMEHT, KOTOPBIHA JIETKO MOYHO HCIIOJb-
30BaTh KaKk Ha MOHHWTOpE KOMIbIOTepa, Tak u Ha iPhone/iPod-
MPUITIOKCHUSX.

USNUUShY HhUUrtS PrUMULANREANPULLECP UPUNRLSUSPAL UNYEL
ULSUULLP USBN0UUL dUuUULUUC FLUZUSELAR ZUUUL

U. Uljpwngjmb
uuonenkU

Upununpuiph wpynibwdbn juqdulbpynudp upbnp £ pug-
dwphy pultpnipnibibph hwdwp: Upnwungpuiph unbnsdwut
dwuht gpujuiinipiniip hwdwj puttwpynud £ wpununpuiiph
wnhpbinyp qupqugiwt gqnpépupwgubph punypp wwppkp
wuydwbbpnid b juquuljipynipmitipnud, vwluy jhwpdtp
sh wunpununinmd wjwbwynpdwt qnpshpubph pugwluynt-
pIuup wyn juquutpynipmitubpnud: Uju hnpdwép tyunwly
niuph (pugub] wn pugp wowewplbny wiuwbwynpdwi gnpdpu-
pugh unknddwt wewljgnipjutp tywuwnnng gnpshp’ 0guiwgnp-
Stiny phulpbnn hpunupdnipdnibubph vhuniyjughnt Ungpby:
Unpblip hunwlnpbt tbpuenmd £ wwpplp wnwewnpuptbp,
phutp b wolwwnwlhgubp” wknupwojuwsd wpuwgpuiph
unbnddwt opowbwlubpnid: Uju wohiwwnmwipp hwph E wn-
unud wpunwunpuiph unbknddwb gnpépupwugh Ypluynn punypn
b wdpugpnd £ pnjutnuljuyhtt hwpwpbpnipniuubpp wnw-
gunpuipiiph b spugpuiynpnnubph dhol: Unpljuykpugyty
E twhuhhtinid hwdupwugpdué wndjujubph puquyh hhdwb Jpu,
hsytu twl ogunugnpstiny wnyjuyukp thopp spwqpuyhtt pulyk-
poipjut wpphwlwb spugnphg: Unphih hhdwt Jpu unbndyty b
htpw oquwgnpdynn gnpdhp, npp Ywuplih b gnpsuplly
hwdwlupgsny ki iPhone / iPad vwppwynpnidutpny:

74 Becmnux PAY Ne2, 2015, 74-84

YK 004.4 [octynmna 12.11.2015r.

NCCIEJOBAHME BO3ZMOXHOCTHU IPUMEHEHUA
MATEMATHYECKHX METOOB AHAJIN3A MY3bIKAJIBHBIX
INPOU3BEJEHUU

JI.LA. A3HaypsiH
e-nouma. lusine.aznauryan8@gmail.com

AHHOTANUA

JlaHHas cTaThs MOCBSILEHA HCCIECAOBAHUIO MaTEMATUYECKUX METOJOB
PacKphITHS OOBEKTUBHBIX MEXAHM3MOB ONMCAHUS M aHAIM3a MY3BI-
KaJbHBIX IIPOU3BEACHUN, FTApPMOHHH, UCIIOTHUTENIBCTBA, «TEXHOIOTHI
TBOPYECTBA M MPAKTHYECKON peann3aluu XyI0KECTBEHHO-ICTETHYEC-
KUX 3aMBICIIOB. B paboTe BBINOJHEH MCTOPUYECKH 0030p MaTeMaru-
YEeCKUX METOJIOB, OTKPHITHIX emie B IV 1o H.3. [Iudaropom u Apxurom,
B cpenHux Bekax — MoranHoM KeruiepoM M HEMEIKMM OPraHHCTOM
Annpeacom Bepkmaiictepom. B kauecTBe MareMaTHYeCKHX CHOCOOOB
aHaJIM3a 3BYKOB U 3BYKOBBIX COOBITHIA MPEIaraloTcss METObI TEOPHU
HEUETKUX MHOXKECTB, KOTOPBIE MOCTY)XaT OCHOBOM A pa3paboTKu
ITOPUTMOB TaPMOHHUYECKOTO aHAIN3a MOCPEACTBOM JIOTUKU HEYETKO-
TO BBIBOJIA.

KaioueBble c10Ba: 3ByKH M 3BYKOBBIE COOBITHSI, 3ByKOBBICOTHBIE CO-
OTHOIIIEHHsI, FAPMOHMYECKHE HHTEPBAJIbI, TeMIepanus, Fuzzy Logic.

B cratbe packpbIBaroTCsS MaTeMaTH4ecKhe METOJIbl aHaji3a MY3bIKaTbHBIX
NPOM3BE/ICHUH, KOTOpbIe, KaK M JPYrHe METOJbI, IIUPOKO HCIOIB3YIOTCS B CO-
BPEMEHHOH IeJjaroruke, MOTYT NMPUMEHATHCS M B YUeOHOM Ipoliecce, HalpaBieH-
HOM Ha ()OPMHPOBAHHME MBIIIJICHUS! MY3bIKaHTa M, B YaCTHOCTH, CIIOCOOCTBOBATbH
oonee 3(h(HEeKTUBHOMY MY3bIKAIbHO-TEOPETHIECKOMY OOYYEHHIO TEOPHH MY3BIKH,
rapMOHUH, aHallM3a MY3BIKAJIbHBIX MPOHM3BENCHUH, MONMUGOHUU U CONBPEIKHO.
Crnenmdrka My3bIKH, MY3bIKQIbHO-TEOPETHUECKUX AUCIMIUIMH, a TaKKe MCHXOJO-
IHYECKHe OCOOCHHOCTH YYalIUXCsl B MY3bIKAIIbHBIX 3aBEJICHHSX, JTAIOT TPEAOCHLI-
KA K OOHAapyXCHHUIO ONpeJesIeHHbIX (POpM anropuTMoOB, MPUMEHHMBIX TOJBKO B
TaHHOU cepe.

[Tocne obnapy:xenus obonbITHON padoTsl [1.A. UepBaTioka, KOTOpHINA MpH-
MEHHJI CHCTEMY aJITOPUTMOB B CBOEM yueOHHKe rapMoHuu B 2-X yacTsx ([1.A. Uep-
BaTIOK Hay4yHo-MeToquueckne OCHOBBI IPENOAABaHMS TapMOHH CHCTEMOW anro-

JLA. Asnaypsan 75

putMa; M.: m3n. «CoBerckuii kommno3utop, 1990r.), ObuM N3ydeHbl MaTeMaTHIeCKe
METOJIbl MOCTPOECHHS aJTOPUTMOB M HMHUTAIIMOHHBIX MOJENEH, a TakXkKe yXKe Ccy-
IIECTBYIOIIHE MTPHEMBI aHaJIN3a MY3bIKATbHBIX TPOU3BEICHHH.

Hcnonp3oBanne MaTeMaTHUECKHX METOAOB B MY3BbIKaJIbHOM Ienaroruke,
MIPOJIOIDKAIOIIEE TPATUIIIH MY3BIKaTHbHOTO 0O0pa30BaHMUS, SBISIETCS €CTECTBEHHBIM
Coco0OM ONTUMH3ALKHN YIeOHOTO MPOIIEcca B CUCTEME MY3BIKAIBHOTO O0YYEHUS.
Hanee, B cTaTbe NPHUBOAATCS IOBOJBI B IMOJB3Y LENECOOOPa3HOCTH pPa3paboOTKH
HOBBIX, 0OOJiee COBEPIIEHHBIX MAaTeMaTHYECKHX METOAOB aHAIN3a MY3BIKAIBHBIX
3BYKOB, 3BYKOBBIX COOBITHH C IIEJIbI0 BHEAPEHUS MX B IMpOIecC 00y4eHUs] MY3bI-
KaJTbHO-TEOPETHYECKUM TUCIUILTUHAM (TEOPHH MY3BIKH, TAPMOHUH, aHAIN3Y MY-
3BIKAJILHBIX TPOM3BEACHUMN, TOJU(POHUU U COMb(EIKUO0) B3aMEH CYIIIECTBYIOIIHX.
KoneuHoit 11enbto uccie1oBaHus SIBISIETCS CO3IaHAe KOMITBIOTEPHBIX MPOrpaMM Ha
OCHOBE aJITOPUTMOB, KOTOPBIE TTO3BOJISAT OOJIETYNTh TBOPUECKUAN TPYT MYy3bIKaHTA.

B pamkax gaHHOH cTaTbu HUXKE MPUBOASTCA HEKOTOpPbIE M3BICKAHUS, MO3BO-
JISFOIINE TIOJIOKUTh WX B OCHOBY MPOTPaMMBI, aBTOMATH3UPYIOIIEH MPOIecC rap-
MOHHMYECKOT0 aHaIN3a MY3bIKaJIbHOTO IIPOU3BEICHUSI.

[Ipexnae, yem mepelTH K pa3dopy MOHATHIA HEYETKOTO MHOXKECTBA, KOTOPHIE
BIIOJIHE COIJIACYIOTCSI ¢ MHTYUTHBHBIMH TPEACTABICHUSIMHA 00 OKpPY>KaoIeM MHpE
Y, B YaCTHOCTH O MY3BIKE, CJIEJIyeT OINPENEIUTh CBA3b MAaTEMAaTUKH U MY3bIKH, KO-
TOpast 00ycIOBIIeHa KaK UCTOPUYECKH, TAK U BHYTPEHHE.

Eme B IV Beke 10 H.3. Benukwuit [Tudarop, co3gaBiimii Tak Ha3bIBaeMBbIi TH-
(haropeiickuii cOr03, ¥ €ro COpPATHUK APXUT — KPYIHBII TEOPETUK B 00IacTH muda-
TFOPEUCKON MY3BIKM CO3JaJIM MY3bIKaIbHYIO CUCTeMY [1], B OCHOBE KOTOpPO# ObLIH
JIBA 3aKOHA, KOTOPhIE HOCAT UMEHA ATHX JIBYX 3aMeYaTelbHBIX YUEHBIX. DTH 3aKO-
HBI TTOCTYJINPOBAJIH:

JIBe 3Byuamme CTpyHBI ONpPEnesstoT KOHCOHAHC, €CIU MX JJIUHBI OTHOCSTCA
KaK Liesble Yncia, o0pasyromue TpeyroisHoe uncio 10=1+2+3+4, t.e. kak 1:2, 2:3,
3:4. Ilpuyem, yeM MeEHbIIIC YKUCIO N B OTHOIIeHUU n/(n+1), rae n=1, 2, 3, Tem co-
3BYYHEE MOJyYarOUINiics HHTEPBa.

YacroTa koneOaHUS W 3BydYalledl CTPYHbI OOpaTHO NMPONOPIHOHAIBEHA €€
mare |

w= a/l, (I — mHa cTpyHBI, @ — K03pPUIHEHT, XapaKTepU3YIOIUH pu3ndec-
KHE CBOWCTBA CTPYHBI).

Jnist mOHMMaHMs ONMMCAaHHBIX Janee CBA3eH MY3BIKaIbHOTO aHAIH3a C TEOpPHU-
€l HEYETKOW JIOTMKM W 3BYKOBBICOTHOM KOHCTPYKIMH IHOTPEOYIOTCS HECKOJBKO

76 HUccneoosarnue 6ozmodichocmu NPpUMEHEHU MamemamuiecKux Memooo8 aHanusd ...

MOHATHH TEOPHUU MY3bIKH, B YACTHOCTH, FaMM, HHTEPBAJIOB MEXy TOHAMU U JaJa.

I'ammoli, nu 3ByKOpsIOM, Ha3bIBAa€TCs MOCIEI0BATEILHOCTh 3BYKOB, pacIio-
JIOKEHHBIX B BOCXOJAILIEM MJIM HUCXOZSIIEM IOPSIIKE OT OCHOBHOT'O TOHA (3BYKa).
WnTepBanoM MeXJTy TOHaMH Ha3bIBAE€TCS MOPSIKOBBIM HOMEp CTYNEHHM BEPXHETO
TOHA OTHOCHUTEJIbHO HWKHETO B JAaHHOM 3BYKOpsIZE, @ HHTEPBAIbHBIMU KO3 PHULIH-
€HTaMH JIByX TOHOB — OTHOLICHHE YacTOTHl KOJIEOaHUI BEPXHETO TOHA K YacTOTe
HIDKHETO: W,/W;. MaremMaTHyeckoe BhIpa)KEHHUE CUCTEMbI 3BYKOBBICOTHBIX COOTHO-
LIEHUH — J1afia Ha3bIBAETCSl MY3bIKAIbHBIM CTpOoeM. Jlax — 3To npusiTHas Ui Ciyxa
B3aMMOCBS3b MY3BbIKAJIbHBIX 3BYKOB, ONpezesisieMasl 3aBUCMMOCTBI0 HEYCTOMYMBBIX
3BYKOB OT YCTOMYMBBIX M MMEIOIIAsl OMpEAEICHHbIN xapakTep 3By4aHusi. OCHOBOU
MY3BIKQIBHOW IKAIBI-TaMMbI TTQaropeiies ObUT MHTEpBai — okTaBa. OHa sBIISIET-
€. KOHCOHAHCOM, MOBTOPSIIOIIMM BEpPXHHUU 3BYK. JlJIsI MOCTPOEHUSI MY3bIKaJIbHOM
raMMsl nugaropeiiniaM TpeboBatoCh pa3aeauTh OKTaBy Ha KpacHBO 3Bydalllue dac-
Tu. Tak Kak OHU BEPUJIM B COBEPIICHHBIE IPOMOPLMHU, TO CBSI3AJIM YCTPOMCTBO TaM-
MBI CO CPEAHUMH BEITUYMHAMU: apHU(PMETHUECKHMH, TE€OMETPUUIECKUMH, FAPMOHH-
yeckuMHU. YTO KacaeTcsi My3bIKH CPEJHHX BEKOB, TO YK€ TOTJa OBUIM ONpe/IeIeHBI
HUHTEpBaJbHbIC KOI((UIMEHTH U COOTBETCTBYIOIIME MM HHTEpBajabl. OHM ObLIH
Ha3BaHbI COBEPIIEHHBIMA KOHCOHAHCAMH U MOJYYMIIN CIEAYIOUINE Ha3BaHU: OKTa-
Ba (Waolwy= 2/1, 1,/1:=1/2); xBunTa (W2/W1=3/2, l/1:= 2/3); xBapTa (WolW1=4/3, 1,/1; =
3/4). 3ByKu B MY3BIKaJbHOH ramme CBSI3aHBI MEXAY COOOH OmnpeneleHHBIMHU 3a-
BUCHMOCTAMU. OIHM W3 HHUX SBJSIOTCS HEYCTOWYHMBBIMU U TATOTEIOT K APYTHUM,
ycToiunBbIM. B Kaknolt ramme ecTh Hambosiee yCTOWYMBBIN, OCHOBHOM TOH. OH
Ha3bIBAETCS KTOHUKOW», M C HETO HAYMHAETCS JaHHAs My3bIKalIbHAas CUCTEMA.

Wnes coBepiueHCTBa OKPY’KAIOIIEr0 MHUpa Biajella yMaMH YYEHBIX U B I1O-
cnenyrorue 3moxu. B nepsoit nonosune XVII Beka Morann Kerutep (Hemeruii
MaTeMaTHK, aCTPOHOM, MEXaHHUK, ONTHK, MEePBOOTKPHIBATENHh 3aKOHOB JBIDKEHUS
rtaHeT COJIHEYHOW CHCTEMBI) YCTAaHOBMJI CEMb OCHOBHBIX TaPMOHHUYECKHUX HHTEp-
BaJIOB: OKTaBy — 2/1, GonblIyro cekcty — 5/3, Manyro cekcTy — 8/5, YHCTYI0 KBUH-
Ty — 3/2, yncryto kBapTy — 4/3, Oomnbiyro Tepuunio — 5/4 u Manyro Tepuuio — 6/5. C
MTOMONIBIO 3TUX MHTEPBAJIOB OH BBIBEJ BECHh 3BYKOPSA] KaK MaXOPHOTO, TaK M MU-
HOPHOTO HAaKJIOHEHUSI.

XVIII BeKk OTKpbUI HOBBIE CTPAHUIBI B UCTOPUH MY3bIKH. OCHOBHOE OTKpBI-
THE B 3TOH 00J1aCTH clelail HeMelkuid opraHuct A. Bepkmaiictep. OH oCyIeCTBIII
TE€HUAJIBHOE pEIICHUE, OTKA3aBIINCh OT COBEPUICHHBIX M HECOBEPIIEHHBIX KOHCO-
HaHcoB nugaropeiickoii raMmbl. CoxpaHuB okTaBy, A. BepkmaiicTep pazmenun ee

JLA. Asnaypsan 7

Ha 12 paBHBIX yacTeil. HOBBIN My3BIKaIbHBINA CTPOU IMO3BOJIMI BBHITOIHATH TPAHC-
noHupoBanue Menoanu. C BBEJEHHEM 3TOTO CTPOS B MY3BIKE BOCTOPKECTBOBAJA
TeMrepanys (0T JaT. cCopa3MEpPHOCTB).

B 4eM ke cocTosII0 MaTeMaTHUECKOE OMUCAHNE PABHOMEPHO-TEMIIEPHUPOBaH-
HOTO CTpOosi? AHaNMW3 MHOTHX TPAaIWIMOHHBIX TPUMEPOB [2], HampuMep, HapOaHON
MY3BIKH TTOKa3all, YTO Yalle BCEro B HEW BCTPEUAIOTCS HHTEPBAJIBI, BHIPaKaeMBbIE C
MOMOIIBIO0 OTHOIIEHUH YacToT: 2 (okTaBa), 3/2 (kBuHTA), 5/4 (Tepuus), 4/3 (kBap-
Ta), 5/3 (cexcra), 9/8 (cexynna), 15/8 (centuma). DTH U ApyTrHe BHIBOIBI TOKA3AIH,
YTO My3bIKaJIbHAS IIKajda JOJDKHA OBITh pasjenieHa Ha 12 yacteil m B MaTemarude-
CKOM MOCTPOCHUU 12-1 MaxOpHbIE U 12-U MUHOPHBIE TOHAJILHOCTH TOXKIECTBECHHBI.

CJ'ICZ[yeT OTMETUTBH, YTO A0 CHUX IIOP ACIAIOTCAIl OIBITKU YCOBCPIICHCTBO-
BaHUS PaBHOMEPHO-TEMIIEPHPOBAHHOTO CTPOS, B OCHOBY KOTOPOTO ITOJIOKEHBI Yac-
TOTHI, BBIpXKAIOIIUECS MPHUOIIKEHHBIMUA 3HAYCHUSMH YHCENl. A TPUOIMKEHHOE
3HAYeHUE HMPPAOHAIBLHOTO YMCIIa BCETAa ONPEACIACTCS ¢ 3aJaHHOM CTENeHbIo
TouHOCTU. WTaK, posk/ieHre HOBOTO MY3bIKAIBHOTO CTPOSI HE MOTJIO MMPOU30UTH 0e3
M300peTeHMsI JIOrapu(MOB M Pa3BUTHs aIreOphl MPPALMOHAIBHBIX BeauuuH [1].
be3 3HaHms morapudpmMoB TMPOBECTH pacyeThl PABHOMEPHO-TEMITEPHPOBAHHOTO
cTposi ObLIO Obl HepeasibHO. Jlorapudmel cTaiv cBOocoOpa3HOW «anreOpol rapmMo-
HHW», HA KOTOPO# BbIpocia TeMriepauus. Fcropus co3gaHust paBHOMEPHON TEMIIe-
pamuu ere pa3 CBUACTENBCTBYET O TOM, KaK TECHO IEPerIeTaloTCs CyI0bl MaTe-
MAaTUKH U MY3bIKH.

[Ipuctymast x aHaNMM3y MaTeMaTHYECKUX METOJIOB, CIEAYET OTMETHUTh, YTO
OoJbIIast YacTh UCIIOJIB3YEMbIX TIOHSTHI MO CBOEH MPHUPOJIC HEYETKU U Pa3MBITHI, a
TMIOTIBITKA 3aTHATh UX B TPAHUIIEI KOMOWHATOPUKH WIIH JIBOUYHOM JIOTUKH TIPUBOIUT
K HEIOMYCTUMBIM HCKOKEHHSIM. MOKHO TOJILKO MPEIICTABUTh KaKHe MY3bIKaIbHbIE
OTTEHKH, 00EPTOHBI TIPU TAKOM IOJIXO/Ie TepsroTcs HaBceryna. He BpaBasich B Je-
TalM, MOKHO CKa3aTh, YTO B HACTOSIIEE BPEMSI W3BECTHBI HECKOJIBKO MPUHIMIIN-
AJIBHO PA3HBIX IMOAXOOOB K PCHICHUIO 3aJla4 MY3bIKaJIbHOT'O aHaJIn3a. BO-HepBBIX,
MO>KHO HCIIOJIb30BaTh KJIACCHYECKUE METOABI aHalu3a (Hampumep, KOppesuuoH-
HI)IC) — €CJIM JaHHBIC B3aHMMO3aBHCHMBI, 4 HUX 00BEM OTHOCHTEILHO HEBEIHK. Bo-
BTOPBIX, MOYKHO MOCTPOUTH SKCIEPTHYK CUCTEMY. B-TpeTbUX, MOXKHO BOCIIONB30-
BaThCsl METOAAMU HEHPOHHBIX ceTeil. 11 HakoHel, Kak IpeiaraeTcs B HACTOSIIECH
paboTte, Bocmonb30BaThcss MeTonamu Fuzzy Logic (HeueTkoit joruku). Jlist 3Toro
CIIEAYEeT BOCIOJIb30BATHCSI KAUECTBEHHBIMH XapaKTEPUCTUKAMHU TUMA: «OOJBIINH-
CTBO (4yTh OOJIBIIIE)», «HAACHKHBIH (YCTOMUYUBBIN)Y», «HEMHOTO (UyTh MEHBIIC)» U

78 HUccneoosarnue 6ozmodichocmu NPpUMEHEHU MamemamuiecKux Memooo8 aHanusd ...

t.11. Cynpb6a HeveTko# joruku (Fuzzy LOgiC) kak HOBOTO Hay4HOTO HAIIPaBJICHHUS,
BO MHOTOM CXOJIHa C €€ COJIepyKaHneM — HeOOBbIYHA, CJIOKHA U MapagokcansHa. He-
YEeTKYIO JIOTUKY CUYHTAIOT «TPEThEil BOJIHOW MHTEJUIEKTYaJhbHOTO MPOrPaMMHpPOBa-
HUs». B ee ocHOBE JI€KUT TEOpHsT HEUSTKIX MHOXKECTB, U3JI0KEHHAsI B CepuH paboT
Jlotdu 3ame. B aTux paborax paccMaTpHUBAIOTCS DJIEMEHTHI MHOXKECTB, IS KOTO-
PBIX QYHKIUS TPUHAJICKHOCTH MIPEACTABIsIET COOOH He KEeCTKUI mopor (MpuHai-
JISKUT/HE TPUHAIICKUT), a MIABHYI0 CUTMOMIY (YacTO YHPOILIAEMYIO JOMaHOM
JTUHHUEH), «IIPOOETaIoIyI0» BCe 3HAYEHHs OT HYJS A0 equHHIbl. Hexoropsie yde-
HbIE TOJIAraroT, YTO caMo Ha3BaHue “Tuzzy” («HEUeTKH», «Pa3MBITHII») IPUMECHHU-
TENBHO K TEOPHH 3a/ie ABJAETCS HE COBCEM aJeKBAaTHBIM W IMPEAJaraioT 3aMEHUTHh
ero Ha 0oJiee TOYHOE: «HENPEPHIBHAS JTOTUKaY.

3ameuaTeNbHbIEC YCIIEXH, IOCTUTHYTHIE C TIOMOIIBI0 METOIOB HEYETKOW JIOTH-
KW, TTO3BOJIMJIN PACKPHITh MHOTHE TalHBI MPUPOABI U CO3/1aTh Bce Ooiee u Oomee
COBEpILECHHBIC AITOPUTMBI, MoJiesn. OCHOBHOM TE3HC cO3/aTenell TEOpUH HEUETKUX
MHOJKECTB 3aKII0YaeTCs B TOM, UTO, MO0 CYTH, OOBIYHBIC KOJIMYECTBEHHBIE METOIBI
aHaJM3a CUCTEM HENPUTOAHBI JJSl TYMaHHCTHYECKHX CHUCTEM H, BOOOIIe, JTHOOBIX
CUCTEM, CPAaBHHUMBIX II0 CJIOXHOCTH C TYMaHHCTUYECKHMH. B OCHOBE 3TOTO Te3uca
JISKUT TO, YTO MOXKHO OBLIO OBl HA3BaTh PUHIUIIOM HecoBMecTUMOCTH. CyThb 3TO-
T'O MPUHIIMIIA TAKOBA: YeM CII0KHEE CHCTEMa, TeM TPYAHEe JaTh TOYHbIC U, B TO Ke
BpeMsi, UMEIOIIHNE MPAaKTUIeCKOe 3HAUEHUE CYXKJCHHS O ee moBeneHuu. Jlns cuc-
TEM, CJI0)KHOCTh KOTOPBIX MTPEBOCXOTUT HEKOTOPBIH IIOPOTOBEIN YPOBEHb, TOYHOCTh
Y TPAKTHYECKUI CMBICIT CTAHOBATCS TMOYTH MUCKIIOYAIOIUMH JIPYT Ipyra Xapakre-
puctukamiu [4]. AIbTepHaTHBHBIN NMOAX0, peuiokeHHbIN JI. 3ane, onupaercs Ha
MIPENIMOJI0KEHUE O TOM, YTO B OCHOBE MBITIUICHHS YEIOBEKA «ISKHUT HE TPAJAHIIN-
OHHas JBY3Ha4YHasl WM JJa)ke MHOTO3HAYHAs JIOTHKA, a JIOTHKA C HEYEeTKON WCTUH-
HOCTBIO, HEUETKHMH CBSI3IMH M HEYSTKHMH NpPaBWIAMH BBIBOJIAY». IJTOT TMOJXOJ
naeT NpuOIMKeHHbIE, HO BecbMa 3((EeKTHUBHBIE CITOCOOBI ONMUCAHUS CIIOKHBIX CHC-
TeM, HE MOJMAOIINXCS TOYHOMY KoJudecTBEeHHOMY aHanu3y [5]. CaMbie TIpOCThIE
MpaBUIa KOTOPBIE MOXHO OY/AET MCIOJIb30BaTh 3TO — JJIEMEHTAPHBIE JIOTHUECKHE
oTHOIIeHus (O6oibIe YeM, H WIH, U T.J.), B TO BpeMsl Kak 0oJjiee CII0KHBIE pPacCyx-
JICHUSI O TOM, OJIarONpPHSITHA JIM CHUTYAIlMsl I HeT, OyJyT CTPOHUTHCS HAa OCHOBE
OoJsiee CIOXHBIX OTHOUIEHUH (eci, To, MHa4e). BrIOOp MHTEIEKTYaIbHBIX MOJIe-
JIel ¢ 3aJ]aHHOW CTETIEHbIO TOYHOCTH, OTIEPHUPYS PUHIIUIIAMH MTOBEJICHUSI CUCTEMBI,
onuchIBalOTca FUzzy-metogamu. [[ns onucaHus CUCTEM MOKHO BOCIIOIB30BAThHCS U
MIPUHITUTIAMA 00OOIIICHHOW MOJIETH HEYETKOTO BBIBoAa Mammanu u Takaru-Cy-

JLA. Asnaypsan 79

T'eHO, a TaKKe MHTePECHEHIINMH TIpaKTHIeCKUMH padoTamu Kocko, KOTOpEIi m30-
Open Tak HasbiBaeMbie Fuzzy Cognitive Maps — HeueTKkne KOTHUTHUBHBIC MOJICIIH,
Ha KOTOpPbIX Oa3zupyercs: OOJIBIIMHCTBO COBPEMEHHBIX CHCTEM AMHAMHUYECKOI'O MO-
JeTUpoBaHusl B (PMHAHCaX, MOJUTUKE, OM3HEce, CUXONOTuu U T.1. MM ke Obuia
HCClIeIOBaHa B3aMMOCBSI3b HEUETKOM JIOTUKU U TEOPUH HEUPOHHBIX CETEH.

st moboro aHanrsa He0OXOAUMO co3/1aBaTh 0a3y AaHHBIX, B 9TOH CBSI3H XO-
TEJNOCHh OBl OTMETHTH PAOOTHI M. 3eMaHKOBOM, yCUIIHUSMHI KOTOPOH OBLIN 3aJI05KEHBI
ocHOBHI Teopun HeueTknx CYBJl (cuctem ympaBieHus: 6a3amMu TaHHBIX), CITOCOO-
HBIX OTMIEPUPOBATh HETOYHBIMHU JAaHHBIMH, 00pa0aThIBaTh HEUYETKO 3aJJaHHBIE 3aIpo-
CBl, @ TAKXKE UCIIOIb30BATh KAUECTBECHHBIE NTaPaMETPhl — HAPSILy ¢ KOJIHYECTBEHHbI-
Mmu. [ToutH B TO ke Bpemst Obljia pazpaboTaHa HedeTKas anredpa — HeoObIYHAs Hay-
Ka, TO3BOJISIOIIAS UCIIOIb30BaTh IPU BBIYUCICHHUSX KaK TOYHbIE, TaK U MPUOIU3U-
TEJIbHBIC 3HAUEHUSI IEPEMEHHBIX, YTO TAKXKE SIBISETCS MPEKPACHBIM HHCTPYMEHTOM
IIpY aHaJIU3€ HEYETKHUX, [0 CBOEH NPHUPOJE, W PA3MBITBHIX NOHATHH. Ha3BanHbIE
CHOCO0BI BBIYMCIICHNH, aHANIK3a U JOTMYECKOT0 BBIBOJA MOJIYYMIH LIMPOKOE pac-
npoctpaneHue. B obmactu My3bIKOBeACHHUSI 00palleHHe K TEOPUH HEYETKUX MHO-
JKECTB ¥ €€ HHCTPYMEHTAPHIO OBLIO BIIepBBIE MpeanpuHaTo B 1998 roxy [6]. Anen-
JIAUS UIMEHHO K 3TOMY aHAJIMTHYECKOMY almnapaTy pa3HOCTOPOHHE MOTHBHPOBAHA.
Hampumep, nupmwkep, KOHLIEPTMEHCTEP WM apaHXHPOBILMK 3apaHee, 0 peneTu-
UM, NpopadaTbiBaeT WHTEIEKTYIbHYI0 cXeMy (C moMoIIblo Teopun Fuzzy
Logic), ucnonHeHus, My3bIKQJIbHOTO COTPOBOX/ICHUSI UIIK COBMECTHOTO C COJIHC-
TOM CO3JaHHMS XyI0’KECTBEHHOT0 00pasa.

CrnenyeT OTMETHUTH, UTO TJIaBHAsI My3bIKalbHas MBICITb, 3aJI0)KEHHAS B ITPOU3-
BEJCHUH — 3TO MEJIOANS, SIBISIOMIASACS OCHOBOW MY3bIKH. BaxkHEHIINI 37IeMEHT My-
3bIKM — PUTM, & TaKXKe XapaKTepHas OCOOEHHOCTb — 3TO YEPEeNOBAHUE TKEIBIX
3BYKOB C OoJiee JISTKUMH. PUTM, Meloausi, MeTp, FapMOHUS, TeMOp — B COBOKYII-
HOCTH COCTaBIISIFOT SI3bIK MY3BIKH.

[TockonpKy, TOMUMO MCIIONB30BaHMSI HOTHOTO MaTepraia, a TakXKe I CO3-
JaHWS «BIIEYATIIAIOUICH 3BYKOBOM KapTHHBI-00pa3a» BO3MOXKHBI U JKEJATEIbHBI
MY3bIKaIbHbIE UMIIPOBU3AIMY, TO OPUEHTAIMS Ha MO3MINI0 MpodeccroHana, mpu-
HUMAIONIETO MPHUOIN3UTENHHOE PELIeHHe M0 3apaHee MpopabOTaHHON MM WHTEI-
JIEKTyaJIbHOU CXeMe, OCHOBAHHOM Ha Teopuu Fuzzy LOgiC, B onmMCaHHBIX YCIOBUIX
MTO3BOJISIET BBECTH HEYETKOE MHOXKECTBO.

3amaun OCMBICTICHHSI 3BYKOBOI'O 00pa3a W TBOPUYECKUX BO3MOXKHOCTEH, BBI-
SBJICHUE IIyTeH pealu3allud IBITAIOTCS PEIIUTh Y4YEHbIE B CBOMX MCCIIEI0OBa-

80 HUccneoosarnue 6ozmodichocmu NPpUMEHEHU MamemamuiecKux Memooo8 aHanusd ...

Tenbckux padorax. C 3TOM LeNnpl0 HIKE IPUBOISATCS OCHOBHBIE ITOHATHS, UCIIOJIb-
3yemsble JI. 3aje mpu ONMCaHUM CBOETO MOAXO0JA K aHAJIN3y CIIOXKHBIX CHUCTEM U
MIPOLIECCOB MPUHATHS PEIICHUN — HEYETKHE NTEPEMEHHBIC, HEUETKHE BBICKA3bIBAHUS
U He4yeTKue aaropuTtMbl. ClieayeT OTMETUTh, YTO 3BYKOBBIE COOBITHS, MPHHAJJIE-
JKalle My3bIKaIbHBIM NIPOM3BENEHHSIM (PEUEBBIM IPOU3BEACHUSIM Ha A3bIKE MY3bI-
KH), MO)KHO aHaJIM3UPOBATh 110 aHAJIOTHHU C JIEKCUKOM eCTECTBEHHBIX SI3BIKOB. Kak-
JI0€ 3BYKOBOE COOBITHE X MOKET CUUTATHCSI CKATHIM «OMUCAHUEM) HEYETKOTO MO-
MHOecTBa M(X) OT MOTHOTO MHOKEeCTBa obiactu paccyxnenuit U, rme M(X) ecTb
3HaueHue X [6]. Tak, Hampumep, X ecTh KOMIUICKC 3BYKOB, M(X) — BUIOBas MpH-
HAJJIS)KHOCTh 3TOTO KOMIUIEKCa (MaXOPHBIA CEKCTaKKOPJ, MaIbIi MHHOPHBINA Tep-
LKBapTakkopa ® T.1.). U — akKopJMKa TOTO MJIM WHOT'O TapMOHHUYECKOTro cTuiis. B
0003HaYEHHOM CMBICJIE SI3bIK MY3BIKH MOKHO PacCMaTpHUBaTh Kak CUCTEMY, B KOTO-
pOH HEYETKHMM IOAMHO)KECTBAM MHO)KecTBa U IPUIUCHIBAIOTCS 3JIEMEHTApHBIE U
COCTaBHBIC CHMBOJIBI (AKKOPBI, TAPMOHUYECKHE OOOPOTHI, TOHAIBHBIE MPOCIENO-
BaHUA W T.JA.). Torga ¢ 3TOH TOYKH 3pEHUS MOXHO TPEJCTABUTH 3BYKOBOW KOM-
IUIeKC, COJIep KallMid MaIylo TEPIUIO U Mallyto cekcTy oT 6aca h. Ilpu sTom 3Have-
HUE WHTEPBAJIBHOIO COCTaBa €CTh HEYETKOE MOIMHOYKECTBO M — Ma)KOpHBIN CEK-
CTaKKOpJ, 4 3HAYECHHUE TOH K€ MHTEPBAJIbHOU KOHCTPYKLUHU B KOHKPETHOH BBICOT-
HOM MO3UIMU — HEYETKOE MOJAMHOKECTBO M — aKKOp/l C OCHOBHBIM TOHOM g. Takum
o0pa3oM, 3HaUeHHE 3BYKOBOT0 KoMiuiekca h—d—g siBisieTcst nepeceueHreM M — ma-
JKOPHBIN CEKCTaKKOpA U M — akkOpJl C OCHOBHBIM TOHOM g. IIpu 3TOM B KauecTBe
HEYETKON MEpEMEHHON pacCMaTpUBAETCA PAa3HOBUIHOCTh AKKOpZA, TOr/a 3TOH ITe-
peMeHHON (Ma)KOPHBIM CEeKCTaKKOP[, MaJIblii YMEHBIICHHbI KBUHTCEKCTaKKOP U
T.JI.) MOTYT OBITh CUMBOJIBI HEYETKHX MOJMHOXKECTB MOJHOTO MHOXECTBA BCEX aAK-
KOpZIOB C OCHOBHBIM TOHOM g. BMecTe ¢ TeM NepeMEeHHOI MOXHO CUHMTaTh U caM
OCHOBHOW TOH, Tor/a ee 3HaueHus (a, b, ¢ U T.JI.) ClIeAyeT UHTEPIPETUPOBATh KaK
CHUMBOJIBI HEYETKHUX MOAMHOKECTB IOJHOIO MHOYKECTBA BCEX TOHOB MY3BIKAJILHOM
cUCTeMBbl. B 3TOM cMbIciie OCHOBHOW TOH CTaHOBUTCSI HEYETKOW MEPEMEHHOM, T.€.
[IEPEMEHHOM, 3HAUYEHUSAMH KOTOPOM SBISIOTCS CHUMBOJBI HEYETKMX MHOXKECTB.
BaxxHO OTMETUTH, YTO 3HAYEHUE NEPEMEHHON «OCHOBHOM TOH», BBIPAXKEHHOE MY-
3BIKOBETUECKUM ITOHITHEM, TOPA3JI0 MEHEE TOYHO, YeM YHCII0, 0003HAYaIoIIee Yac-
TOTy KoJeOaHWH TaHHOTO TOHA. B ommcanHOM ciydae paccMaTpuBaeTcss MEHbIIAS
YETKOCTh TEOPETUYECKOTO IOHITUS «TOH» MO CPABHEHHIO C €r0 aKyCTUYECKUMU
napaMmerpamMu. HeueTkocTh MaHHOrO MOHATHSA HEM3MEPUMO BO3PACTET, €CIU MpPHU-
HUMAaTh BO BHHMAaHHUE 30HHYIO IPUPOAY MY3BIKAJIBHOIO CIIyXa, B COOTBETCTBHU C

JLA. Asnaypsan 81

KOTOPOH KaXKIBIAH TOH MPEACTABICH HE SAMHCTBEHHOW YacTOTOH KoyieOaHuid, a He-
KOTOPOH 4aCTOTHOU 30HOM.

Takoit mogxox maeT BO3MOXKHOCTh KOJTHYECTBEHHOTO MIPEICTABICHUS JTFOOBIX
3BYKOBBIX SIBIICHHIA, B TOM YHCJIe HE MMEIOLINX B HACTOSIIEE BpeMs anpoOHpoBaH-
HBIX CPENICTB M3MepeHws. IMeHHO 0 9TOW MPUYHHE MHOTHE CIIEITUATNCTHI TEOPUHI
MY3BIKH B CBOE BPEMs OTKa3aJUCh OT paCCMOTPEHUS TeMOpa, apTHKYJISIIUH, aKIIeH-
TOB U JPYTUX cOOBITUH (hoHHYECKOTO ypoBHS [7]. B KomMuecTBEeHHBIX OAX0JaX K
aHAJIM3y CHCTEM IPOCThIE OTHOIIECHUS MEXIY IBYMSI YHCIOBBIMH I€PEMEHHBIMH
OOBIYHO OMHUCHIBAIOT C IMOMOIIBIO TAOJIHMIIBI, KOTOPYIO «CIIOBECHO MOXKHO IMpPEJCTa-
BHTH B BUjE HaOOpa BBICKA3BIBAaHWM, HAIIPUMEpP, €CIIM X paBeH 5, To y paseH 10;
€CJIM X pPaBeH 6, TO y paBeH 14 u 1.1.» [6]. Takoii sxe crocod onucaHus MPUMEHSIET
u JI. 3azme, TONBKO TIepeMeHHBIE X U Y SBISIOTCS HEUETKUMU [4]. 3aBUCUMOCTH Me-
YKy HAMH OITMCBIBAETCSI C TIOMOIIBIO BBICKa3bIBaHWN BUIA «u3 A crexyeT By, rae
A u B — cuMBONBI HEUETKHX MHOXKECTB, MPENCTABISIOMUE cOO0M 3HAUEHHs Tepe-
MEHHBIX X U Y. MOXKHO TPUBECTH IPUMEP HEUYETKUX BHICKA3bIBAHHUN, OTHOCSIIIHXCS
K paccMaTpuBaeMoil oOmacTu My3bIko3HaHus. [omyctum, uto [6] A — HedeTkoe
MHO’KECTBO, O0OBEIUHSIONIee 3HAUeHUsT TepeMeHHor X (x1, X2 u T.1.), IpeacTas-
NsfoIIed co00l 3ByKOBBICOTHYIO KOHCTPYKIIHIO, a B — HeueTkoe MHOKeCTBO, 00be-
JTUHSIONIee 3HA4YCHHs nepeMeHHod y (yl, y2 u T.A.), TpeAcTaBisomeld co0oif
OIIEHKY 3BYKOBBICOTHOI KOHCTPYKITUH X CITyIIATEIIEM.

[TockonbKy CIOXKHBIE 3aBUCUMOCTH Y OT X TpeOYIOT AJiIsi CBOETO OIUCAHUS
HEYETKHX aJrOPUTMOB, TO TOT/Ia HEYETKHU alropuT™M OyIeT MpEeNCTaBIiATh co00it
YIOPSIIOUYEHHYIO TTOCIIE0BATEIbHOCTh MHCTPYKIIMMA, HEKOTOPbIE U3 KOTOPHIX MOTYT
COJIep’KaTh CHMBOJIBI HEUETKUX MHOKECTB, HAIIPUMED:

— €CIIM Y BEITMKO, TO HEMHOT'O YMEHBIIUTH X;

— €CITH Y He OYEeHb BEJIMKO U HE OY€Hb MaJio, TO OY€Hb HEHAMHOTO YBEJIMUYHTH X;

— €cJM Y MaJjlo, TO CTOII; €CIIM HET, TO YBEJIMYUTh X Ha 2.

Hcnonp3oBaHne aHAIMTUYECKOTO alapara TeOPUN HEYETKUX MHOXKECTB Je-
JlaeT W3IMIIHEH pa3paboTKy OTAENBHBIX HM3MEPUTENBHBIX METOAMK JUISl KasKIOro
BHUJIa 3BYKOBBIX sBneHanii. Ha3BanHbIH arrmapaTr IMmo3BOJIACT OLUCHHMBATH YKAa3aHHBIC
ABJICHUA HE C TOYKH 3PCHUA KOJIMYECTBEHHOM BBIPAXKCHHOCTHU HEKOTOPLIX CHCHH-
(puUecKuX KavyecTB, a ¢ TOUKH 3PEHMS NPUHAUICKHOCTH 3THUX KauyecTB MOTOKY XY-
IIO)K@CTBGHHOﬁ I/IH(I)OpMaHI/II/I. Heuetkue BBICKAa3bIBaHHs, OIIMCBIBAOIINEC 3aBUCH-
MOCTB Y OT X, MOTJIH OBl BBITIISIACTH CIEAYIOLIMM 00pa3oM:

— €CJIM X — MUHOPHOE TPE3BYYHE ¢ OCHOBHBIM TOHOM h, TO st X1 MUHOpHBI

82 HUccneoosarnue 6ozmodichocmu NPpUMEHEHU MamemamuiecKux Memooo8 aHanusd ...

CEKCTAKKOP]] C OCHOBHBIM TOHOM hY — cOOBITHE ¢ MUHMMAJIbHOI HOBH3HOH (TaKkoe 3Ha-
YeHHUE Y OOBSACHICTCS TEM, UTO X; SBISIETCS CTPYKTYPHBIM BAPUAHTOM X);

— €CJTH X; — MUHOPHBII CEKCTAKKOP/I C OCHOBHBIM TOHOM h, TO 1715l X MUHOP-
HBIA CEKCTaKKOPJ C OCHOBHBIM TOHOM ¢, Y; — COOBITHE C OOJBLICH CTENEHbIO HO-
BU3HBI (IaHHOE 3HAYCHME Y; CBSI3aHO C TEM, YTO X SBISETCS BBICOTHO-TIO3ULIMOH-
HBIM BapUaHTOM Xj);

— €CJIU X2 — MMHOPHBIN CEKCTaKKOPJ C OCHOBHBIM TOHOM ¢, TO AJIS X3 — Ma-
JIbI, YMEHBIIEHHBIN TEPLKBAPTAKKOPJ C OCHOBHBIM TOHOM €. IIpu aTOMY; — YK€ HO-
BO€ cOOBITHE (BBICOKAsi CTETIEHb HOBHU3HBI ATOTO 3BYKOBOTO COOBITHsI OOYCIIOBJIEHA
TEM, YTO X3 SIBIIIETCS] IPYTUM aKKOPIOM IO OTHOLIEHHIO K Xz) ¥ T.JI. 3/1€Ch UCIIOIB30-
BaHbBI TOJILKO /IBa BapHaHTA OLIEHKH 3BYKOBBICOTHBIX KOHCTPYKLHA, (PHKCHUPYIOLTHX
HaJIMYME WM OTCYTCTBHE COOBITHS B TApMOHUYECKOM PSLY.

OTkpeiBaroLIasics BO3SMOXKHOCTh PAaH)KMPOBAHUS 3BYKOBBIX COOBITUH IO cTe-
MEHX UX HOBU3HBI MO3BOJIUT B CIIydae €€ pealn3aliy MOJIy4uTh Oojiee JAeTanbHOe
MIPENICTaBICHNE O COOBITHITHON CTPYKType MY3BIKalbHOTO Tpou3BeneHus. C yude-
TOM aKTYaJbHOCTH HCCIIE[IOBaHUS MPOOJIEMBl pealln3allid TBOPYECKHUX IPEICTaB-
neHui [7] muprxepa, HHTEPIPETaTOpa-KOHIIEPTMeicTepa U COTMCTA TaHHAs CTaThs
npeacTaBisieT co00i MOMBITKY PacKphITh OOBbEKTUBHBIE MEXaHU3Mbl aHAIN3a MY-
3bIKAJIBHOT'O ITPOU3BCACHUA, TAPMOHUHA, UCIIOJIHUTEIIBECTBA, KTEXHOJIOTUIO)» TBOpPUC-

CTBa, HpaKTH‘leCKOﬁ peam3alnu XyJ0KECTBCHHO-OCTECTUICCKUX 3aMbICJIOB.

JIMTEPATYPA

1. Fongenvo M.III. AHanu3 My3bIKaJbHBIX Mpom3BeneHUH. CTPYKTYpbl TOHAIBHOW MY3HBI-
KU B IBYX 4acTsx. M: ['ymanutapHblii u3narensckuii nentp «Biagocy, 2003.

2. Macanosuu A.M. Dtor HeueTkuil, HeueTkuit, Heuerkuid mup M: PCWeek/REN. 16,
1995.

3. 3aoe JI.A. OcHOBBI HOBOTO MOAXOJa K aHAIHM3Y CIOKHBIX CUCTEM H MPOIECCOB MPHHS-
TUs pemieHuir //MaremaTtuka ceromus: cO. cT.; mep. ¢ anri., Coct. A.B. Illuneiiko.
M.,1974.

4. 3ybapesa H.5. O npUMEeHEHMN TOYHBIX METO/OB B aHAIN3€ MY3BIKAIBHBIX NPOU3BE-
nennit. ['ymanuTapusanus o6pazoBaHus 1 BHEydIeOHas paboTa B By3e, TEXHHKyMe, oOpa-
30BaTENBHON MIKOJIe: MaTepuaisl [V MexBy3. Hayd.-TipakT. KoH(. [Tepmsb. 1998.

5. 3ybapesa H.F. O IpUMEHEHNN TEOPUN HEYETKUX MHOMKECTB B MY3BIKOBEIUYECKOM HC-
cienoBanuu (Ha mpuMepe aHanmza ¢oprenuanHoro mukia C. [IpoxkodneBa «JleTckas
My3BIKay). MlcTopust 1 MeTomonorusl Hayku: MexBy3. c0. Hayd. Tpymos. I'n. pen. B. B.
Mananus. [Tepms. 2000. Beim. 7.

JLA. Asnaypsan 83

6. Kulichkin P.A., Zubareva N.B. Onthe formation role of the “events dynamics” in the
musical composition for voice and piano. Proceedings of the International Congress on
Aesthetics, Creativity and Psychology of the Arts. Perm 2005 Edited by E. Malianov,
C. Martindale, E. Berezina, L. Dorfman, D. Leontiev, V. Petrov, P. Locher. 3y6ape-
Ba H.b., KamamuukoBa U.C. «CoObITHiiHAS JWHAMHKa» BOKAJIBHOTO MPOH3BEICHUS
(OHLIT CPaBHHUTCIIBHOT'O aHaJin3a MY3bIKAJIbHOTO U MMOSTUYECKOI'0 psAJ0OB B pOMaHCax M.
I'muakm). M. Bectauk [IT'MUK. 2005.

7. http://www.ug.ru/old/97.24/t8_1.htm

STUDY ON APPLICATION OF MATHEMATICAL METHODS
FOR MUSIC WORKS’ ANALYSIS

L. Aznauryan
e-mail: lusine.aznauryan8@gmail.com
SUMMARY

This article is devoted to the research of mathematical methods detec-
ting the objective mechanisms for description and analysis of music
works, harmony, instrumental performance, art “technology” and im-
plementation of artistic and aesthetic designs. The article a historical
overview of mathematical methods discovered by Pythagoras and Arc-
hytas way back in 4™ century before Christ, as well as by Johannes
Kepler and Andreas Werckmeister, a German organist, in the Middle
Ages. As a mathematical tool for sound event analysis the fuzzy-set
theory methods are proposed to provide the basis for developing fuzzy
interference algorithms of Fourier analysis.

Keywords: sounds and sound events, the ratio of pitch, harmonic in-
tervals, tempered, fuzzy logic.

BMUJCSUUUL USEN0UGNONPE3NPULLELE YGLLARONRESUL ZUUUL
UUEEUUSPUUYUL UGENYLELP UbLULUUL ZLULUI NN R ESUL
NrUNrRULOURCORT

L.U. Uquwnipjub
£y huiugk: lusine.aznauryan8@gmail.com
uvonoenkU

znpjudp wdhpwd b bpudpnwljub unbndwgnpsnipniutbiph,
hwpunthuwyh, juwwnwpndubph, unbnswgnpsdwut «nbjunn-
ghugh» b gbnupdbunu-ginughnwljuwt dnwhwnugnidubph
Jhpunwljut hpwgnpsdwt tjwpugpdut b Jbpnidnipjut
opjtjinhy dkjwuhquutph pugwhuyndwt dwupkdwnhlulut
Ubkpnnubph nuundbwuhpdwip: Ywunwupjws b dpw. IV qu-
powd Mynipwgnpluh b Uppjupwintuh Ynnudhg, huswybu twb vheotw-
nupnid 8. Ukuyyikph b ghpdwitiugh tpgkhnt U, dhpljuuwyuinkph

84 HUccneoosarnue 6ozmodichocmu NPpUMEHEHU MamemamuiecKux Memooo8 aHanusd ...

Ynnuhg puguhuynjws dwptdwnhjujut dkpngubph yuwn-
dwljut ybpnidnipniup: Npuytu duyth b Awjtughtt hpunwpdnt-
pntuutnh Jbpmisnipjut dwpk- dwnhujub Enwtwlikp
wnwowplynid Ei ny hunwl] puqunipmibbubph wbkumpub
Ubkpnnubpp, npnup hhup Yéwnuykt ny hunwl Eqpujugdwt
Ubpnnutpny hupunuhly yEpnismipjut wignphpdutnh douldw
hwdwp:

Zhitwpuinkp’ Zugnibtbp b dwjught hpunwpdm pynd i,
hugmiuubiph hwpwpbkpwlgnipniy, hwpunuhl] pugdhonudubp,
hwdwswihnipnily, Fuzzy Logic.

Becmnux PAY Ne2, 2015, 85-90 85

BUOJIOI'USA

YIAK 577.1 [octynmna 18.11.2015r.

IJNK/AP-1 CATHAJIBHBIA ITYTH ITPA UIIEMHAYECKOM
NHCYJIBTE

K. TageBocsan

Poccuticko-Apmanckuii (Cragauckuil) ynusepcumen,
Uncmumym monexynapuou ouonoeuu HAH PA
tadevosyankar@gmail.com

AHHOTADUA

Nmemnueckuit naCynbT (M) aBNSCTCS KOMIUIEKCHBIM 3a00JICBaHUEM,
STHOJIOTHIECKUMH (PAKTOPaMHU KOTOPOTO SBIISFOTCS] KaK T€HETHUECKHE,
Tak U (akTopsl BHeIIHel cpeabl. B matorenes I BoBneueHO MHOXeE-
CTBO CHUTHQJIBHBIX IyTEH, PEryIUPYIOIIHNX MPOLECC Pa3BUTH HHCYIIbTA
U TepHoj BoccTaHOBICHHA. OTHUM M3 TaKHMX CUTHAIBHBIX KacKaIoB
seisiercst JNK/AP-1. B 3aBucumoctd OT TeueHust u Tsokectn WU
JNK/AP-1 cucrema, ¢ 0JJHOW CTOPOHBI, YU4aCTBYEeT B MATOOHOXHUMHUYE-
CKOM KacKafie, C Ipyroil — akTHBHO BOBJIEYEHA B BOCCTAHOBHUTEIBHBIC
npoueccol niociie . Takum o6pazom, 3BeHbst INK/AP-1 curaanbHo-
TO KacKaja SBJISIOTCS MOTeHINATbHBIMA MHUIICHSIMH JJIs1 MOHUTOPUHTA
u Tepanuu npu UU.

Karwuesbie caoBa: AP-1, INK, nmieMudeckuiit HHCYIIBT.

BBenenne

HNmemnueckuii unacynet (M) sBnsercs Hanbonee pacnpoCTpaHEHHBIM OCT-
PBIM HEBPOJOTHYECKUM PACCTPOMCTBOM, cOCTaBisFOIIM 80% BCeX MHCYIHTOB U
70% Bcex nepedpoBackynsapubix natonoruit (LICIT). MW kaxapiii rog mopaxaer 5—
6,5 MiiH. 4yenoBek W yHOcHT 4,6 miH. ku3Hed. 25% mnepenecuinx WU siensroTcs
JIOIBMH aKTHBHOTO BO3pPAcTa M TOJBKO TPETh M3 HUX JOCTUTACT MOJTHOW COIHAIh-
HOM ¥ TTPO(heCCUOHAIBHON PEeHHTErPAIlUK B OOIIECTBO, OCTAIbHBIC TUOO YMHUPAIOT,
00 OCTAIOTCS MHBAJUIAMH /10 KOHIIA CBOMX JHeH [1].

NN xapakTepusyeTcs BHE3AIMHBIM HAPYIICHUEM KPOBOOOPAIICHUS B 00JIACTH
MO3ra B CBSI3M C CY>KEHHEM INPOCBETa KIIOYEBBIX apTepHil, T1M00 MX MOJIHON 3aKy-

86 INK/AP-] cuenanvubiti nymo npu uwieMuieckom uHCyibnme

MOPKOM, BCJIEACTBHE YEr0 HApPYyIIAETCS AOCTAaBKa KHUCIOpOAa B MO3L C MOCIEAYIO-
LIEW NOTEPEN €ero HEMPOJIOTMYECKON aKTUBHOCTH. | JlaBHBIMU npuunHamu U sB-
JIFOTCSI MHTPAKpPaHUAIBHBIH TPOMOO03 WK SKCTpaKpaHHANBHBIA AMOomm3M. Ha-
PYLICHHE HUPKYJSIIMU KPOBH B OTIPEIEIEHHON 00JIaCTH MO3ra IPUBOAMT K 3aITyCKy
WIIeMHYECKOTO KacKaia, KOTOPBIA BeAeT K CMEePTH HEeHPOHOB W LepedpalbHOMY
uHpapkry [2].

HN paccmaTtpuBaeTcss Kak MyJlIbTH(AKTOPHOE 3a00JeBaHue, TaK KaK MpUYH-
HOM €ro MOTYT CIYXHUTh KaK TeHeTH4YecKue (PakTopbl, Tak u (PaKTOpHl BHENIHEH
cpenst [3, 4]. B marorenese MM y4yacTByeT MHOMKECTBO CHTHAJIBHBIX IMyTEH, KO-
TOpPBbIE PErYJIUPYIOT IPOLECCHl Pa3BUTUSA UHCYJbTAa U BOCCTAHOBICHHE OpraHU3Ma
nociie Hero. Mimeercst Hemano cBenenuii o BosiedeHHoctd JNK/AP-1 curnansHoro
nyTd B naroreHe3 M, 3BeHbsI KOTOPOrO SIBISIFOTCS MOTEHIUAIBHBIMUA MUILICHIMU
JUIs MOHUTOpUHrau Tepanvu UH.

JNK komMmoHeHT

c-JunN-tepmunanphas kuHaza (JNK) oTHOcHTCS K CeMEHCTBY MHUTOTCH-
aktuBupytomuxcs nporenaknaas (MAPK) u siBisieTcs cTpecc-3aBUCUMON KHHA30,
KOTOpasi aKTUBUPYETCSI B OTBET Ha Pa3iruHble (JOPMBI BHEIIHUX Pa3IpaKUTENeH,
BKiovas wiremuio [5-7]. Yenosex mmeer 3 rema MAPK (MAPK 8, MAPK 9,
MAPK 10), nokanu3oBanHbsix Ha xpomocomax 10, 11, 4, COOTBETCTBEHHO, M KaX-
neii MAPK reH B X0 albTepHATHBHOIO CIUTACHHTa 00pa3yeT OSJIKU CO cpenHeit
Maccoii 4546 xJla. INK1 n JNK2 skcripeccupyroTcs IpakTH4eCKd BO BCEX Opra-
Hax W TKaHAX, a JNK3 — B 1ieHTpanbHOi HEPBHOW CHUCTEME M CEpPACUYHON MEIIIIIIE
[8]. Kaxnmpiit u3 (hepMEHTOB MMeeT pazM4HYK CyOCTpaTHyrO CHelu(UIHOCTS,
BCJIECTBHE YETO BBIMOJHSET ONpPENesICHHYIO (PYHKIMIO B Pa3sHbIX KJIETOYHBIX IIPO-
neccax. JNK1 ygactByeT B (M3MOIOTHYECKHX MPoOIleccax IMOPHOHATBHOTO Pa3BU-
TUS. B Pa3BUTUU HEWPOHAIBHBIX CETEH, MUTPAallMM HEWPOHOB, apXUTEKTYpe IEHI-
punoB u 1.1. B cBoto ouepens, INK2 u JNK3 akTUBHPYIOTCS B OTBET Ha CTPECCO-
Bble ctuMynbl. OcHoBHBIM cybctpaTtoM JNK sBnsiercst C-Jun, xotopsiii hocdonm-
pupyercst o N-tepMuHaIEHOMY y4acTKy (cepuH 63 u 73). OqHako MHOTHE HCCITe-
noBanua nokazanu, 9ro JNK Taxke dochonupyer n npyrue TpaHCKPHUIIINOHHEIE
¢akropsl, Takue, kak C-Fos, ATF2 u t.1. O6pasyromumecs: akTHBHbIE (DOPMBI TpaHC-
KPUIIIMOHHBIX (PaKTOPOB BMECTe ¢ C-JUN SIBISIOTCSI KOMIIOHEHTAMH JTUMEpa aKTH-
Bupytomiero oemka-1 (AP-1), KOTOpBIH peryaupyer 3KCIpPEeCcCHI0 MHOTHX CTpecc-
3aBHCHUMEBIX TeHOB [9].

K. Taoesocsn 87

[Toxazano, uro Bce JNK urpator BakHyr0 poib Kak B MpoIecce HeMpOHaIh-
HOTO aronTo3a, TaK U B BOCTIAJIMTENFHBIX MPOIeccax, KOTOPbIE UMEIOT MECTO MPH
WU [10, 11]. B gactaocTH, JNK peryaupyroT TpaHCKPHITIHIO T€HOB, YIaCTBYOIIHNX
B OTMEUYCHHBIX TPOIIECCaX, a TAKXKE HEMOCPEACTBEHHO CBS3BIBAIOTCS C ATUMH TeHa-
mu. Hampumep, INK moryT dochomupuposars Bel-2 u Bel-XL, ymenbinas ux anTu-
arnonTo3Hyl akTHBHOCTh. C Apyroit croponsl, dochomupupys Bim u Bmf, onn
YCHUJIMBAIOT MX MPOANONTOTHYECKYIO aKTHBHOCTb.

JNK siBnsieTcst oMHOW U3 IJIaBHBIX TEPANlEBTUUECCKUX MULICHEW B JIEYCHUU U
nuarnoctuke M. Ha sxuBotHBIX Moaenssx NN ObLT0 MpogeMOHCTPUPOBaHO, YTO TPH
rcnonbp30BaHny MHrHONTOpoB JNK yMeHbIIaeTcs pasmMep nHpapKTHOH 30HHI [6, 12].

AP-1 KOMIIOHEHT

AP-1 — TpaHCKPUNIIMOHHBIH (AaKTOP COCTOWT W3 TOMO- U TE€TEPOIUMEPOB,
OenkoB cemeiictBa Jun, Fos u ATF. Unensl cemeiictBa AP-1 HMEIOT CTPYKTYpy
«IeHIIMHOBOW 3acTexku-monHum» (BasicRegionLeucineZipper, bZIP), xoropas
SIBIISIETCSI BOJIIOLIMOHHO KOHCEPBATHBHOW M XapaKTEPHOW JJISl MHOTHX TPaHCKPHII-
IUOHHBIX (akTopoB. C-TepMUHANBHBIA JOMEH <JICHIIMHOBOW 3aCTEXKH» OT-
BETCTBEHEH 3a JMMEPH3AIINI0, HEOOXOAMMYIO JIJIsl OCYIIECTBICHUSI PETYIISITOPHBIX
(GyHKIWH, a Takke 3a CHeUUPUYHOCTh M CTaOWILHOCTH JuMepoB, a N-Tepmu-
HaJBHBIN JIOMEH — 32 CBS3BIBaHHE TpaHCKpUNIHOHHOTO ¢akropa ¢ JJHK. J(umepsr
AP-1 BoBIleYEHBI B PEryISIUI0 TPAHCKPUIIMH MHOTHX T'€HOB, YYaCTBYIOUIHX B
mpolecce AeJIeHUs KIETOK, alloNTo3e U OTBETE Ha CTPECCOBBIE CUI'HAJIBI, TIOCPEACT-
BOM CBsi3bIBaHUS ¢ KoHceHCycHbIME JIHK-perynsropHbiMu snementamu. c-Jun ro-
MOAUMEpBI U C-Jun/C-FOS retepomuMepsl CBS3BIBAIOTCS ¢ CEMUHYKICOTHIHOW KOH-
cencycHoii nocnenoarenbHocThio TGACTCA, Takke ussectHyto kak TRE (TPAR
esponsive Element), Toraa kak ATF 2 romoaumepst u C-Jun/-ATF 2 retepoaumMepsi
CBSI3BIBAIOTCS C BOCBMUHYKIIeOoTHIHOM nocnenoBaTenbHocThio TGACGTCA (CRE,
¢ AMP Responsive Element) [13].

Posb JNK/AP-1 curHajibHOTO MyTH B Pa3BUTHH HIIEMHY€CKOr0 HHCYJIbTA
Kak yxe ObUTI0O OTMEUEHO BHINIE, B XO/€ WIIEMHUH MPOMCXOIUT AKTHBAILIWS
JNK/AP-1 curnanpHOrOo Kackaaa. B wacTHOCTH, 1O Mepe TMOCTYIUIEHHS CHUTHaja
npoucxoaut aktusaius JNK mocpencteom ero dochonupupoBanus. 31ech 0CO0YI0
porb urpaetr JNK3, Tak kak IMEHHO OH OTBETCTBEHEH 32 MHAYKIHIO aloNTOTHYE-
CKHUX IIPOLIECCOB IIPU CTPECCOBBIX ycIoBUAX. Ha :KMBOTHBIX MOAEIsIX ObUIO MOKa3a-

88 INK/AP-] cuenanvubiti nymo npu uwieMuieckom uHCyibnme

HO, 9TO y MbIIeH ¢ MyraHTHBIM reHoM JNK3 Habmoganace MUHUMaNbHAsS MHIYK-
s penenTopa «cMepTi» Fas. Ito mo3BoinsieT npeamnonoxuTs, uro JNK3 perynu-
PYET SKCIPECCHUIO TIIaBHBIX YYaCTHHKOB alonToTHYecKoro mporiecca [14]. B to xe
Bpems, 1o Mepe aktuBaiuu JNK mpoucxoaur dochonupruoBanue C-Jun, KOTOPHIH
crocoOeH 3aTeM 00pa3oBBIBATH TOMO- U T€TEPOANMEPHI, TEM CAMBIM KOMIUIEKTYET
AP-1. Beino nmokazano, uto JNK-3aBucumas TpancakTuBaius C-Jun crocoOCTByeT
HelipoHaipHOMY anonTo3y B xoae MU [15]. O6pa3oBaHue TOro Wik HHOTO JUMepa
3aBHICHT OT THIA aKTHBHPYIOIIEr0 CHUTHANA U BPEeMEHHU ero mocrymienns. Kak muz-
BECTHO, B 00JaCTH MIIEMUYECKOH MONYTEHH — MIIEMUYECKOH MeHyMOpe — Ipouc-
XOJISIT aKTUBHBIE MPOIIECCHI HEUPOATONTO3a, KOTOPhIE TAKXKE MOTYT OBITH 00YCIIOB-
nenbl aktuBaruein JINK/AP-1 curHamsHOTO Kackaja, B YaCTHOCTH, 00pa3oBaHUEM C-
Jun/ATF2 rerepomumepa mocpenctsom aktuanuu JNK. O6 3TOM Takke cBuje-
TENBCTBYIOT Pe3yNbTaThl UCCIIECOBAHNHN, JEMOHCTPUPYIOIIHNE, YTO HCIIOIb30BaHUE
Maibix PHK, oOpa3syromux MIMWIBKH, KOTOPhIE MHTUOMPYIOT COOpKY aumepa C-
Jun/-ATF2, npenoTBpaiiaeT akTuBanuio Heipoarnonrosa [14, 16]. C mpyroii cTo-
pousl, yBenudenne sxcrnpeccun ATF2 nogasnser obpazoBanue C-Jun/c-Fos komr-
JieKca, KOTOPBIA Takxke oOpasyercs moj BosaelicTBueM JNK u ydacTByeT B Kite-
TOYHOM BBIKMBAaHUH, YTO BEJIET K MOCIEAYIOIIEMY HEMPOHAJIIbHOMY aromnrosy. B
CBOIO ouepesb, cam C-FOS, momumo MHrHOMpoBaHWs 00pa30BaHUSI KOMILIEKca C-
Jun/-ATF2, taxke mpenoTBpaimaeT B3aMMOJICHCTBUE 3TOrO TETEPOJUMEPA C COOT-
BeTcTByrOomuM caiitoM Ha JIHK, TeM caMbIM, HE JOyCKas SKIICPECCHIO PETYIHPYe-
MBIX UM reHoB [17-19]. TanHOe COOGBITHE MOKHO OOBACHHTH TEM, YTO B 3aBHCH-
MOCTH OT TskecTH MU oTMeUeHHBIM CUTHAJIBHBIM Kackaj Ha HadaJbHbIX 3Talax ak-
TUBHO BOBJIEYEH B IPOIECC THOENM HEHPOHOB, a MPH BOCCTAHOBUTENBHBIX IPO-
[Ieccax OH y4aCTBYET B MX BbDKHBAHUH.

Takum obOpasom, B 3aBucumoct OT Tspkectd M JNK/AP-1 curnansHBIi
KackaJl MOXeT y4acTBOBaTh Kak B mpouecce pa3utus MU, Tak U B BOocCTaHOBU-
TENBHBIX Ipoleccax Mocie Hero. JIaHHOe TPeAINoNoKEeHNE SIBISICTCS OYCHb BaX-
HBIM B acrekTte MoHWTOpuHra u tepanuu WU. B Hacrosiee Bpemsi mpoBoIsTCA
MHOTOYHCIICHHBIE HCCIIEJIOBAHUS, JEMOHCTPUPYIOIINE TIONOXKUTEIbHBIE Ppe3yilb-
TaThl OTHOCHUTEIBHO MPOTEKTOPHOH poiu mHruOuTopoB 3BeHbeB JNK/AP-1 cur-

HaibHOTO Kackana npu MU [9].

K. Taoesocsn 89

JMUTEPATYPA

1. Biller J., Love B.B., Vascular diseases of the nervous system. A. Ischemic cerebrovascu-
lar disease. Neurology in clinical practice. The neurological disorders.2000; 2: 1125-
1166.

2. Harrigan M.R., Deveikis J.P., Handbook of cerebrovascular disease and neurointerven-
tional technique. Humana Press, USA, 2009.

3. Ikram M.A., Seshadri S., Bis J.C., et al. Genomewide association studies of stroke New
Engl J Med. 2009; 360: 1718— 1728.

4. Hugh S. Markus., Stroke genetics. Human Molecular Genetics. 2011; 20: 124— 131.

5. Unal-Cevik L., Kilinc M., Can A., Gursoy-Ozdemir Y., Dalkara T., Diverse Roles of INK
and MKK Pathways in the Brain. Stroke. 2004; 35: 2189-2194.

6. Kuan C., Burke R., Targeting the JNK signaling pathway for stroke and Parkinson's dis-
eases therapy. Curr Drug Targets CNS Neurol Disord. 2005; 4: 63-67.

7. Manning A., Davis R., Target JNK for therapeutic benefit: from Junk to gold? Nat Rev
Drug Discov. 2003; 2: 554-565.

8. Tokiwa Y., Hiroshi K., Hiroshi N., Diverse Roles of JNK and MKK Pathways in the
Brain. J. of Signal Transduction. 2012; 2012: 9.

9. Jie C., Ming Z., Yong-qing Z., Zhi-heng X., JINK pathway: diseases and therapeutic po-
tentiall. J.Acta Pharmacol. 2007; 28 (5): 601-608.

10. Danny N. Dhanasekaran D., Reddy P., JNK Signaling in Apoptosis. Oncogene. 2008,
27, 6245-6251.

11. Ip T., Davis R. Signal transduction by the c-Jun N-terminal kinase (JNK) — from
inflammation to development. Current Opinion in Cell Biology. 1998, 2, 205-219.

12. Murata Y., Fujiwara N., HaeSeo J.,Yan F., Liu X, et al. Delayed Inhibition of c-Jun N-
Terminal Kinase Worsens Outcomes after Focal Cerebral Ischemia. The Journal of
Neuroscience. 2012,32, 8112 8115.

13. Hess J., Angel P., Schorpp-Kistner M., AP-1 subunits: quarrel and harmony among
siblings // J Cell Sci. 2004. T. 117, Ne Pt 25. 5965-73.

14. Kuan C., Whitmarsh A., Yang D., Liao G., Schloemer A., Dong C., Bao J., Banasiak K.,
Haddad G., Flavell R., Davis R., Rakic P., A critical role of neural-specific INK3 for
ischemic apoptosis. Proc Nat Acad Sci USA.2003, 100, 15184-151809.

15. Raivich G.,Behrens A., Role of the AP-1 transcription factor c-Jun in developing, adult
and injured brain. Prog Neurobiol. 2006, 78(6), 347-363.

16. Ramos-CabrerP.,Campos F., SobrinoT.,Castillo J., Targeting the Ischemic Penumbra.
Stroke. 2011, 42[suppl 1]:S7-S11.

17. Dam van H., Castellazzi M. ,Distinct roles of Jun:Fos and Jun:ATFdimers in
oncogenesis. Oncogene. 2001, 20, 2453-2464.

90 INK/AP-] cuenanvubiti nymo npu uwieMuieckom uHCyibnme

18. Zhongmin Y., Shoufang G., Jingyan L., Zhihao Z., Bin S., Opposing Roles for ATF2 and
c-Fos in c-Jun-Mediated Neuronal Apoptosis. Molecular and Cellular Biology. 2009, 29,
2431-2442.

19. Zhang, J.,Zhang D., Mc. Quade J., Behbehani M., Tsien J., and Xu M., c-fos regulates
neuronal excitability and survival. Nat Genet. 2002, 30, 416—420.

JNK/AP-1 SIGNALING PATHWAY IN ISCHEMIC STROKE
K. Tadevosyan
SUMMARY

Ischemic stroke (IS) is a complex disorder caused by interplay of both
environmental and genetic factors. There are a lot of signaling path-
ways involved in the pathogenesis of IS, which regulate stroke devel-
opment and its repair. Growing evidence implicates the JNK/AP-
1signaling pathway in the pathogenesis of IS. Depends on the severity
of IS, INK/AP-1 could participates as in pathobiochemical cascade as
in the recovery processes after 1S. So, members of the INK/AP-1 sig-
naling pathway are potential treatment and diagnosis targets of IS.
Keywords: AP-1, JNK, ischemic stroke.

JNK/AP-1 UQFUYUSPUL NNk Y60 PCEURY YU.eJUONRU
Y. funbnujut
uvonoenkuU

botidhly upquwsp (P4) hwinhuwinid £ hwdwihp hhjwugnt-
pintl, nph wnwewgdw jupwuhsutphg Jupnn kb hubk] husybu
dunwiqulijul, wyhyku k) wpunwphtt dhpwuwynh gnpénuutpp:
PY-h wupngtubkgnud ubkpgpuydus L puquuphy wgpuljught
ninhubp, npnlp jupquynpnd Eu bU-h qupqugdw pupwugpp
b Jhpujwiqunnuljut dudwbwjuhwnwsp: Unuhuh nighub-
nrhg dkhu E INK/AP-1-p: Ywpaws bU-h Swupnipjnithg b pb-
pugphg, JNK/AP-1 hwdwljupgp vh Ynnuhg nbp k pwunnid ww-
pnytuuwphvhujut juuljunnid, dniu Ynndhg b wjnpydnpku
pungpyduws b bY-hg Jhpujubqunquljui thnyh dbe: Ujuuh-
uny, INK/AP-1 wqnuljuyhtt ninnt onuljutipp hwinhuwind L
bhu dnhhmnpbhqh b phpuyhwjh ynunkughw) phpufu:
Zhtuwpwntp AP-1, INK, hotuhl Yupdws:

Becmnux PAY Ne2, 2015, 91-94 91

VK 502(479):06 IMoctynumma 20.11.2015r.

OOPMUPOBAHUE CUHAHTPOIIN3MA B HEKOTOPBIX
CEBEPHBIX }’AﬁOHAX APMEHHWU HA IPUMEPE
INPEACTABUTEJIEN OTPAJA XUIIHBIX MJIEKOIIUTAIOIIUX

JL.T. ITansn

Poccuticko-Apmsncruii (Crassanckuil) ynusepcumem
lyov.papyan@gmail.com

AHHOTALIUA

[pouecc GOpMUPOBaHUS CHHAHTPOIU3MA y NPEACTABUTENICH pa3HBIX
OTPAI0B MIIEKONUTAIONIUX BO BPEMEHHOM pa3pese MpOTeKal ¢ 3aMeT-
HBIMH OTKJIOHCHHUSIMH B CBsA3U C 06pa30M JKU3HU HCKOTOPBIX BUI0OB
MJICKOIIUTAONIUX Pa3HbIX PCTUOHOB ApMeHI/II/I, 0 4Y€M CBUACTCIILCTBY-
0T HallM OAHHBIC, CBA3aHHBIC C Ha6J’IIO,HeHI/IeM 3a HCKOTOPBIMU U3
MECJIKUX BU0OB XUIIIHbIX) KUBOTHBIX.

KaroueBble c10Ba: CHHaHTPONHM3M, (POTOJIOBYILIKA, XUIITHUKH.

BBenpenne

PaznuyHble IpUpOAHBIE U AHTPOIIOTCHHBIE (PAKTOPBI — TaKHe, KaK XUIIHHYE-
CKasi BhIpyOKa Jieca, TOBbIIIeHHE ypoBHs o3epa CeBaH, MpeciielOBaHUe W 00CTpe
XHUIIHBIX BHUI0B 3Bepel71 u HTI/IH'HO)KI/IpaTeJ'Ieﬁ I'PBI3YHOB W HACCKOMBIX IMPHBEIIO K
TOMY, YTO HEKOTOPbIE BHIbI)KUBOTHBIX ObLIIH BBIHYX/ICHBI CIIACATHCSI, CTAPASCh KUTh
PSAOM, WIM HEPEKO MO OJHOW KPBIIIEH C TEM XKE YeI0BEKOM. YesoBedeckue Io-
CTPOMKH, B OCOOCHHOCTH MHOTO3TaXKHBIC JI0Ma, B KOTOPHIX (YHKIIMOHUPYIOT MYCO-
POIPOBO/IBI, SIBISFOTCS JUIS COJMIHOTO YKCIA BHIOB KUBOTHBIX MPEKPACHBIM U
yZIO6HI)IM MECTOM [UUIA XXWUJIbS, TUTAHUA U PAa3MHOXKCHUS.

[pencraBuTenu OTpsiia TPHI3YHOB, BCEr/ia B TOW WM WHOW CTEICHH, SIBIISI-
7uch cuHanTporiamu. OHH JTaBHO MPUCIIOCOOMIIUCH K COXKHTEIBCTBY C YEIOBEKOM,
U B TCYCHHE BPEMEHHU OTIMYHO aanTHPOBAIUCH K HOBBIM ycioBusM. Ho B mocies-
Hee BpeMsl BCE Yallle U JaIlle U3 Pa3IuvIHbIX PETHOHOB APMEHHUU TOCTYIAIOT CO00-
[IEHHS O TOM, YTO B TIPEJENiaX YeIOBCUECKUX MOCEJIEHHH, U JIaKe TOPOIOB, JTHEM
ObLIM 3aMCUYCHBI MPEACTABUTEIMN OTPsiIa XUINHBIX. A HenaBHO B EpeBane, B OKpe-
craocTsax Hopkckoro maccuBa, Obina 3amedena mucuiia (Vulpes vulpes). B mammx
HCCJIC/IOBAHUSIX MBI MBITAEMCSI YCTAHOBUTh MPUYNHY TAKHX SIBJICHHM, OMPEACIUTH

92 Dopmuposanue cunaHmponu3ma 8 HeKOMOPsIX CeBEPHLIX patioHax Apmenuu ...

BUJIOBOW COCTaB >KUBOHTBIX-CUHAHTPOIIOB U U3YYUTh U3MEHEHHUS B UX [IOBEJCHUU U
CYTOYHOH aKTMBHOCTH. B maHHOMW cTaThe OBLIM MCCIEOBaHbBI TIOBEACHYECKUE OCO-
OEHHOCTH MPEICTaBUTEIICH OTPsJa XUIIHBIX MICKOIUTAIOIUX B HEKOTOPBIX CEBEP-
HBIX pailoHax ApMeHUH.

MATEPHUAJIBI U METO/bI

Ectp npeanonoxeHue, YTO XUIIHUKY NPUXOIST B YEIOBEUECKUE ITOCETICHUS
3a nuimed. MHOrue U3 HUX IMUTAIOTCS OTOPOCaMM YellOBEKa U IPhI3yHaMH U JpYyTH-
MU MEJIKUMH MJICKOTIUTAIOIIUMH, KOTOPBIEC AaBHO MEPEIlIN B CHHAHTPOIHBIN 00pa3
KU3HH. OOBEKTOM HCCIICAOBaHUS SIBJIUIUCH MPEICTABUTEIN OTPsiAa JIECHBIX U I1O-
neBbIx Mbitred (Apodemus) u xumiabix (Carnivora).

Ycranosiaenne (GpoToJIOBYLIEK

Uro0bl yOETUThCSl B IPaBAWBOCTH AAHHOTO MPEIIIOI0KEHHSI, MBI, HAYMHAS C
Mmapra 2015r., ycranaBiuBanu (OTONOBYIIKH B CEBEpHBIX paiioHax ApmeHun. B
X0J1e paboThl MBI Hconb3oBamu (poromosymku 940 NM HD 2013 ¢ ceHcopHBIMEU
JaTYNKaMH, pearupyroue Ha JBHKEHUS KUBOTHOro. MOTO M BHIAEO MaTepHalIb
MOJTyYHIJITHCH BBEICOKOTO paspetntenus (720p).

VYerpoiicTBa ObUIM yCTAHOBIICHBI HA TEPPUTOPHH CICAYIOIIMX peruoHos: ['e-
xapkyHuk, Koraiik, Jlopu, TaBymr. B kamom OT/IeIpHOM y4acTKe yCTpoicTBa pabo-
TaJM KPyriocyTouHo. HexkoTopble U3 HUX paboTaiy B peKUME OKUIAHMS U HAYMHA-
11 oTO- WM BHIEO-CHEMKY TOJNBKO TOT/IA, KOTJa BCIBIIIKA PearupoBaa Ha JBHKe-
HHE KaKoro-1100 XHUBOTHOTO, & BTOpas IpyIIia yCTPOMCTB CHUMAaJIa HETIPEPHIBHO.

B kadecTBe nprMaHOK OBUTM KCITONB30BAHBI MSICO, XJIe0 U KoJbaca.

Pe3yabTaThl 1 00cy:xKI€HUE

Ha naHHBIII MOMEHT y HAC MMEIOTCS IIEPBBIE U BECbMa HEIUIOXHE PE3yNbTa-
ThL. B ByX permoHax Ham yJanoch 3a(UKCHpOBaTh MOSBIICHHE KAMEHHOW KYHUIIBI
(Martes foina) BOim3u yenoBeuecknx noctpoek. Cayana B AraBHanzope (Koraiik)
HaIll YCTPOWCTBA 3apPETUCTPUPOBAIIH IOSBICHNE)KMBOTHOTO PSIIOM CO CTyAEHYE-
ckuM nancuoHarom EI'TIY. Ha xanpax BuznHO, Kak jgecHast Mblib (Apodemus) npu-
XOUT K NPUMaHKe, a IOTOM Pe3Ko cOpachIBaeT U yoeraer B jiec. Yepe3 HEeCKOIBKO
CEKYH/JI B KaJipe MOsABIsAEeTCA KyHHUIAa M HAYMHAET MIPECIIeI0BaTh CBOO KepTBY. BTro-
poii pa3 Halllu yCTPOWCTBA 3apErHCTPUPOBAIIN KyHHILYy Ha TeppuTopuu CeBaHCKOIro
6oTtannueckoro caga. Ha 3ToT pa3 cam XUIIHUK MPUXOIUIT 33 TPUMaHKaMHU.

W3 nonyyeHHOro HaMu MaTepuaia Mbl CAEIAIN BBIBOA, YTO, IO CYTH, CyIIe-
CTBYIOT 2 CXEMBI IOSIBJICHUSI XMIIHUKOB B IIOCENIKaX. B mepBoM ciydae XMITHUKH

JLI'. ITansn 93

MIPUXOIAT B TOPOJAA U Cella 32 MENKUMH (opMaMi CHHAHTPOIIOB, KOTOPBIE T HUX
SIBJISIFOTCSL IPEeKpacHOM muieil. Bo BTopoM cilydyae XHMIIHUK CaM MUTAETCS HAIIUMU
MIPUMaHKaMH, a 3TO B JIMIITHUHA pa3 MOATBEPXKAAET TOT (PAKT, YTO XUIITHUKH TOXKE
MPUCIIOCOOMIIUCH K YETIOBEKY.

3akJ/oueHue

[TomyueHHBIC HAMH PE3yJIBTATHl JOKA3bIBAIOT, YTO BCE COOOIICHMS, KOTOPOBIE
MBI [IOJTyYaeM M3 Pa3iINYHBIX PETHOHOB HAIlIEH peciryOsMKy, MpaBauBel. M pesyib-
TaThl 3TU BECbMa TPCBOKHLIC. Ecan CUHAHTPOIMHOCTHL XHWIIHHUKOB Ha I[aHHbIﬁ MO-
MEHT 3aKJII0YaeTCsl TOJIBKO B TOM, YTO OHH IIPECIEAYIOT CBOMX JKEPTB U OKa3bIBa-
IOTCSl B UEJIOBEUECKUX MOCEICHUSIX WM XKe MUTAI0TCI 0TOPOCaMH 4eI0BeKa, TO UYTO
Oyzer B OmmkaieMm OymyIieM, KOTAa W3-3a HETPABWIILHOTO U TyOUTEIBHOTO WC-
IMMOJIB30BaHUA MMPUPOJAblI YEJIOBEKOM 3THUM JKXHUBOTHBIM 6YIICT HETrAC)XUTh U OHU, CIIa-
casich, OKOHUYATEJIbHO MEPEHAIyT B CHHAHTPOIHBIA 00pa3 >KU3HU HIIH K€ OKaKYTCS
Ha TPaHU BEIMHAPAHHSI.

JIMTEPATYPA

1. Ilanan JLT., Apymionau M K., I'ynanan B.I", Acnanan A.I'. YBeIn4eHUe 4HUCIa CHHAH-
TPOIHBIX BUJIOB IIO3BOHOYHBIX B OacceiiHe o3epa CeBaH B CBS3U C IOBBIILICHUEM €T0
ypoBHs // MaTepuansl MeXIyHApOIHOW HaydHOU KoH(epeHuuH «buonormyeckoe pas-
HOOOpa3ue u mpobieMsl oxpaHsl ¢ayHsr KaBkaza-2». 2014. CC. 286-287.

2. lansan JI.T'., 'ambapsn I'I. ViccnenoBaHWe MOBEICHUS M aKTUBHOCTH MEIKHX MIIEKO-
MMUTAOIINX METOIOM HCIIONB30BaHus GoTonoBymek. JlomoHocoB-2015, XXII mexmyHa-
poIHast KOH(pEpeHIU CTYJCHTOB, aCHPAHTOB U MOJOABIX yueHbIX: Cep: «buomorus».
2015. C. 171.

3. Caaxsan M.C. ®ayHa rpeI3yHOB ceBepo-BocTouHOi Apmenun // Tpynsl ApM. pOTHBO-
yymHO# craniun. 1964, Beim. 3. CC. 329-346.

4. Cuoopuyk H.B. n ap. OmBIT HCIIONIB30BaHUS (DOTOIOBYIIEK NP U3yUCHUN TTOBEICHYIE-
ckoii akostorun O6apcyka Meles meles. Tepuodayna Poccun u conpenensHbIX TEPPUTO-
puii: marep. VIII chezna Tepuonoruy. o6m-sa. 2007. C. 455.

5. Opnanoec-branxo u op. OnslT npuMeHeHUs TUGPOBBIX (HOTOIOBYIIEK U UIACHTU(U-
Kaluu AMYpPCKHX TUTPOB, OIIEHKH MX aKTMBHOCTH W MCHOJIb30BAHUS OCHOBHBIX MaplI-
PYTOB TiepeMelieHn i)KMBOTHEIMY // B kH.: AMypckuii tTurp B CeBepo-BocTouHoit Aznu:
npoGirems! coxpanenust B XXI seke. 2010. CC. 100-103.

6. Cudopuyx H.B., Poocnos B.B. JlucTaHIMOHHBIE METObI M3y4eHHsI 0apCyKOB: HEKOTO-
pBle 0COOEHHOCTH MCHONB30BaHuUs (oTosoBymek //JlucTaHIIMOHHBIE METOBI M3Y4YEHHS
B 300J10rHMH: Marep. Hay4H. koud. 2011. C. 87.

94 Dopmuposanue cunaHmponu3ma 8 HeKOMOPsIX CeBEPHLIX patioHax Apmenuu ...

ZUB8UUSUULP NN z3NhUbUUSPL UULGMNRU URLULETNMHAUR
QI UANCNRUC @PTUSP WULLUUNRULULECP Orhuuuny,

L.z, Muyut

Zuy-niuwwl (Uyundninulu) hwduwyuwipunl
lyov.papyan@gmail.com

uvonenkru

Uhtwtppnuyhquh dbwdnpdwt qnpéplpwugn Juptwuntuubph
wnuppkp punwbthpubph tkpuyugnighsutiph dnn tplup dw-
dwiwuhun]usmy phpwugh) b ajunbjh sbgmdbpny Juju-
Jws tpwig nkumjuyhtt wpwbdbwhwwnlnipniiubphg nt Ju-
pwé Jhuuwybkpyhg: Upw dwupb ki jununid npny dwp Jupe-
bwuniubph tjuundwdp dkp §nnuhg wighugyus ntunidbw-
uhpnipinitubph wpyniapnid unwugus nydjubbpp:
Zhitwpwinkp’ uhtwlbppnyhqu, (nuwiupuhwing wwpp, gh-
punhy:

THE FORMATION OF SYNANTHROPISM WITH THE EXAMPLE OF SOME
CARNIVORES IN SEVERAL NORTHERN REGIONS

L. Papyan

Russian-Armenian (Slavonic) University
lyov.papyan@gmail.com

SUMMARY

The formation of synanthropism of different mammal species has oc-
curred during the time and has depended on their specifications and
lifestyle. The results of our researches with the example of some small
carnivores are the best evidence for it.

Keywords: synanthropism, trail camera, predators.

Becmnux PAY Ne2, 2015, 95-103 95

YK 577.322 Mocrymwna 20.10.2015r.

DATABASES FOR COMPLETE HUMAN
MITOGENOMES: A REVIEW

H. Hovhannisyan

Russia-Armenian University, Institute of Molecular Biology NAS RA
e-mail: grant.hovhannisyan@gmail.com

SUMMARY

The progress of molecular genetics in the past two decades is characte-
rized by the extensive improvement of DNA sequencing methods and
rapidly accumulating data on genetic variation of different species. In
particular, a big amount ofdata on mitochondrial DNA (mtDNA),
which is invaluable for evolutionary, population genetics and forensic
studies, have greatly improved our understanding of theanatomically
modernhuman dispersal and allowed the reconstruction of matrilineal
genetics histories of numerous human populations. For handling and
analyzingthisimmensevolume of human mitogenomicinformation nu-
merous specific databases were recentlydesigned. Here, wereview on
the most commonly used resources and highlight advantages anddraw-
backs that should considered while implementingnew databases for mi-
togenomic data management.

Keywords: human mitochondrial DNA, database, population genetics.

Introduction

Mitochondria are mammalian cellular organelles that have the function of
oxidative phosphorilation and formation of ATP. Two distinct genetic systems en-
code mitochondrial proteins: mitochondrial and nuclear DNA. mtDNA is a small,
16 569 base pairs (b.p.), circle of double-stranded DNA which encodes 13 essential
components of the respiratory electron transport chain, 2 ribosomal (12S and 16S)
and 22 transfer RNA’s (Fig. 1).It is inherited maternally [1], thus does not recom-
bine with paternal molecule [2,3], has a fast mutation rate [4] and presented by mul-
tiple copies in cell [5,6].

These unique featuresmade mtDNA a versatile tool for evolutionary and
population genetics studies in the end of last century, when genome-wide or whole
genome population studies were a daydream for researcher.

96 Databases for Complete Human Mitogenomes: a Review

After the publication of the milestone Cambridge reference sequence by An-
derson and colleagues[7] researchers began studying human mtDNAusing low reso-
lution restriction fragment length polymorphism analysis with only a few restriction
enzymes, utilizing them to estimate very simple phylogenetic trees. After the appli-
cation of higher-resolution restriction analysis approaches on human mtDNA, first
implemented at the Wilson’s group(UC Berkeley, USA [8]), mitochondrial genome
has becomepopular tool for population geneticists. Finally, in 2000th, the develop-
ment of fully automated sequencing technologies allowed massive sequencing of
whole mtDNA genomes, which has opened a new phase of mtDNA research. Since
then numerous studies have been published where the authors have sequenced hun-
dreds or even several thousand [9-11] humanmitogenomes in order to address med-
ical issues [12], different questions of population genetics [13], phylogeography
[14], demography [15], etc.

Figure 1. The structure of human mtDNA. Genes are indicated in orange, rRNA’s — in yellow,
tRNA’s — in green, non-coding regions — in violet. LSP — light strand promoter, HSP
— heavy strand promoter, O, — origin of light strand, Oy, — origin of heavy strand.

According to Phylotree database [16], which defines current nomenclature of
global human mitochondrial DNA variation, to the date of February 172014 20666
complete human mitogenomes were sequenced and published in ca 300 papers and
projects.Despite these amount of datadoes not exceed even 1/10 of entire human
genome, there are numerous features ofhuman mitogenomes, such as mtDNAhap-
logroups, their geographic distribution, ethnicity of individuals screened, etc.,
which make problematic a large-scale mtDNA data management and analysis. To
integrate these data for further handling and effective analysis, in a recent decade
several attempts were made do implement databases designed specifically for hu-
man mitochondrial DNA data. In this paper, we review the most utilized resources
that weredesigned for human mitogenomic data management.

H. Hovhannisyan 97

Overview of databases

HvrBase

One of the first databases for these specific kind of data was HvrBase [17]
launched in 1998.1t contained aligned sequences of the hypervariable regions | and
Il (HVRI and HVRII) with available information on the individuals (humans or
apes) from whom the sequences were obtained. The authors implemented a 'search’
function, allowing to retrieve the sequences matching a key-word defined byusers,
enabling them to query the following types of information: name in publication or
GenBank, author and publication, species, population,continent and origin. Addi-
tionally, sequences were searchable for certain motifs.

The collection of human data at the time of publication of the HvrBasecom-
prised 5846 and 2302 HVRI and HVRII sequences,respectively. For 2061 samples,
the both of HVR regions were sequenced. HvrBase was not updated since 2000, and,
moreover, today, when researchers utilize complete mitochondrial genomes for popu-
lation genetics studies, the data on HVR1 and HVR2 arenot widely used anymore.

In 2005,by adding more sequences from primates including humans, the da-
tabase was updated to HvrBase++[18] — the improved and extended version of
HvrBase. The HvrBase++ database comprised not only the data on hyper-variable
regions but also the mitochondrial genomes and nuclear sequences from several
chromosomal loci. Human datawere presented by 20,037 sequences. Table 1 dis-
plays a human HVRI dataset gathered from 103 publications which encompasses
sequences from 89 countries and 220 ethnic groups.

Table 1. Human HVRI datasets over six continents

Human Number of

. Populations Languages
samples countries

Continent Lineages

Europe 2033 4358 17 25 31
Africa 1046 1680 25 47 47
North 824 1581 7 34 9
America

South 267 473 7 11 19
America

Asia 2867 4778 23 102 67
Australia/o), 473 10 12 28
ceania

World 7036 13343 89 220 194

98 Databases for Complete Human Mitogenomes: a Review

The collection comprised 13 873 HVRI and 4940 HVRII sequences. Addi-
tionally, authors included 1376 complete mitochondrial genomes, 205 sequences
from X-chromosomal loci and 202 sequences from autosomal chromosomes 1, 8,
11 and 16. In order to reduce the introduction of erroneous data into HvrBase++,
the authors have developed a procedure that monitored GenBank for new versions
of the current data in HvrBase++ and automatically updated the collection. For the
stored sequences, supplementary information on the donors, such as geographic
origin, population affiliation and language could be retrieved. As a new key feature,
HvrBase++ provided an interactive graphical tool to easily access data from dynam-
ically created geographical maps.Now the HvrBase++ is outdated and not available
through the link (http://www.hvrbase.org/) provided by the authors of the database.

mtDB

The mtDB [19] database was created as a compendium for human mtDNA se-
guences.It was launched in 2005 and provided users with population genetic and med-
ical data. mtDB had three main types of functional features. First, it allowed down-
loading of all mtDNA sequences either as individuals or population sets. All datawere
grouped into 10 major geographic regions based on the population affiliation of the
donors. Datasets from the same ethnic groups were available as batches of individual
files. All sequences were cross-referenced to their original publications and most part
of them was linked to theirGenBank accession numbers.By the 1 March 2007 there
were 2697complete mitogenomes taken from 33 references (Table 2).

Table 2: Number of complete human mitogenomes obtained from correspon-
ding geographic regions

Geographic region Number of complete mitogenomes
Africa 287

Middle East 45

Europe 1192

North America 11

South America 14

Asia 922

South Asia 125

Australia 32
Melanesia/Micronesia/Polynesia 69

Total 2697

H. Hovhannisyan 99

Secondly, mtDB had a function of finding polymorphic sites. Atthe moment
of mtDB publication, 3311 polymorphic sites were identified and characterized in
tabular form. This table comprised a separate line for each variable site with a count
of how many sequences contain each particular nucleotide variant at that site, genet-
ic location of the site, codon number and position, and details of amino acid
changes. Clicking on the number of a particular variant users were able to obtain a
list of the sequences, containing that particular mutation (insertions relative to CRS
were discarded) and then to download the sequences.

Third, a'search’ function for mitochondrial haplotypes was implemented in the
mtDB. Haplotypes were searchable by entering the ‘position’ and ‘nucleotide’ for up
to 10 loci. Again, these sequences could then be downloaded from the database.

mtDB was outdated since March 1, 2007 and the lack of convenient functio-
nality of sequence retrieval and data parsing limited the usage of this database.

HmtDB

The database was created in 2005 [20] and relaunched in January 2012 [21].

HmtDB stores mitogenomic data annotated with population and variability
information (Table 3).

Table 3: total amount of mitogenomic data in HmtDB

Geographic Individual Number of Complete Only coding

region type genomes genomes region genomes

Africa Nor-mal 2323 2175 148
Patient 71 71 0

. Normal 1692 1587 105
America Patient 26 24 2
Asia Nor_mal 5715 5655 60
Patient 1115 1115 0

Europe Nor_mal 7142 6648 494

Patient 1706 1569 137

. Normal 1539 1524 15
Oceania Patient 0 0 0
Undefined Normal 5128 5102 26
Continent Patient 524 521 3

All Normal 23539 22691 848

continents Patient 3442 3300 142

100 Databases for Complete Human Mitogenomes: a Review

The annotations of sequences are curated manually, which provides higher
accuracy of the data.Authors have designed a ‘Classifier tools’ that allow the data-
base to predict the haplogroups, bases on Phylotree, for all mitogenomes stored in
database or new sequences provided by users.

HmtDB provides with three main categories of usage: first, users can browse
the database by multi-criterion ‘query’ system; second, analyze their own human
mitochondrial sequences via the ‘classify’ tool (for complete genomes) or by down-
loading the ‘fragment-classifier’ tool (for partial sequences) and third, end-users can
download sequence alignments with reference genomes as well as variability data.

Summarizing, we have reviewed three main databases devoted for human mi-
tochondrial DNA storage and management — HvrBase++, mtDB and HmtDB.

HvrBase++ [4] and mtDB [5] databases were launched in ten years ago but
have not been updated since 2007, while the number of new mtDNA partial and
complete sequences has increased significantly since then. Besides of being out-
dated, these databases did not have appropriate functional characteristics for manag-
ing mtDNA data. For example, a lack of the data on human mtDNA haplogroup
and sorting/grouping functions were restricting the usage of HvrBase++ and mtDB.
Additionally, today, when the Next-generation technologies allow massive sequenc-
ing of entire mitochondrial genomes on population scale, the data on HVRI and
HVRII of mtDNA available in these databases, do not fulfill the requirements of
modern population genetics.

On the other hand, the database HmtDB has numerous options for complex
data searching —a powerful querying system, where user can search data according
to the mutated position, haplogroup, geographic region, tissue, sex, etc; mtDNA-
haplogroup assignment tool, convenient downloading function.However, it does
notcontain sequences obtained after 2013, which also does not allow researchers to
handle all the available mt DNA data.

Concluding, despite numerous databases for human mitogenomic data man-
agement were designed in a recent decade, one part of them is not curated and up-
dated regularly, while the other do not provide convenient functionality of effective
data parsing and further analysis.

H. Hovhannisyan 101

REFERENCES

1. Hutchison, C.A., Newbold, J.E., Potter, S. S.&Edgell, M.H. (1974). Maternal inheritance
of mammalian mitochondrial DNA. Nature, 251(5475): 536-8.

2. Brown, W.M., George, M., &Wilson, A.C. (1979). Rapid evolution of animal mitochon-
drial DNA. Proceedings of the National Academy of Sciences, USA, 76(4), 1967-1971.

3. Michaels, G.S., Hauswirth, W.W., &Laipis, P.J. (1982). Mitochondrial DNA copy num-
ber in bovine oocytes and somatic cells. Developmental Biology, 94(1), 246-251.

4. Piké, L., &Matsumoto, L. (1976). Number of mitochondria and some properties of mito-
chondrial DNA in the mouse egg. Developmental Biology, 49(1), 1-10.

5. Hagstrom, E., Freyer, C., Battersby, B.J., Stewart, J.B.,&Larsson, N.G. (2014). No re-
combination of mt DNA after heteroplasmy for 50 generations in the mouse maternal
germline. Nucleic Acids Research, 42(2), 1111-1116.

6. Merriwether D.A., Clark A.G., Ballinger S.W., Schurr T.G., Soodyall H., Jenkins T.,
Sherry S.T.&Wallace D.C. (1991). The structure of human mitochondrial DNA varia-
tion. Journal of Molecular Evolution, 33(6), 543-555.

7. Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Epe-
ron I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young
I.G. (1981). Sequence and organization of the human mitochondrial genome. Na-
ture, 290(5806):457—65.

8. Cann R.L., Stoneking M., Wilson A.C. (1987) Mitochondrial DNA and human evolution.
Nature 325: 31-36.

9. Derenko, M., Malyarchuk, B., Bahmanimehr, A., Denisova, G., Perkova, M., Farjadian,
S., &Yepiskoposyan, L. (2013). Complete mitochondrial DNA diversity in Iranians.
PL0oSOne, 14;8(11):e 8067.

10. Zheng, H.X,, Yan, S., Qin, Z.D., &Jin, L. (2012). MtDNA analysis of global populations
support that major population expansions began before Neolithic Time. Scientific
Reports, 2:745

11. Behar D.M., van Oven M., Rosset S., Metspalu M., Loogvili E. L., Silva N. M., Kivisild
T., Torroni A., &Villems R. (2012). A “Copernican” reassessment of the human
mitochondrial DNA tree from its root. American Journal of Human Genetics, 90(4),
675- 684.

12. Brandon, M., Baldi, P.A., &Wallace, D.C. (2006). Mitochondrial mutations in
cancer. Oncogene, 25(34), 4647-4662.

13. Duggan, A.T., Evans, B., Friedlaender, F.R., Friedlaender, J.S., Koki, G., Merriwether,
D. A., Kayser M.&Stoneking, M. (2014). Maternal history of Oceania from complete
mtDNA genomes: contrasting ancient diversity with recent homogenization due to the
Austronesian expansion. The American Journal of Human Genetics, 94(5), 721-733.

14. Derenko, M., Malyarchuk, B., Denisova, G., Perkova, M., Litvinov, A., Grzybowski, T.,
Dambueva 1., Skonieczna K., Rogalla U., Tsybovsky I. &Zakharov, 1. (2014). Western
Eurasian ancestry in modern Siberians based on mitogenomic data. BMC Evolutionary
Biology, 14(1), 217.

102 Databases for Complete Human Mitogenomes: a Review

15. O'Fallon, B.D., & Fehren-Schmitz, L. (2011). Native Americans experienced a strong
population bottleneck coincident with European contact. Proceedings of the National
Academy of Sciences, USA, 108(51), 20444-20448.

16. Van Oven, M., &Kayser, M. (2009). Updated comprehensive phylogenetic tree of global
human mitochondrial DNA variation. Human Mutation, 30(2), E386-E394.

17. Burckhardt, F., von Haeseler, A.,&Meyer, S. (1999). HvrBase: compilation of mtDNA
control region sequences from primates. Nucleic Acids Research, 27(1), 138-142.

18. Kohl, J., Paulsen, 1., Laubach, T., Radtke, A.,&von Haeseler, A. (2006). HvrBase++: a
phylogenetic database for primate species. Nucleic acids research, 34(suppl 1), D700—
D704.

19. Ingman, M., &Gyllensten, U. (2006). Mt DB: Human Mitochondrial Genome Database,
a resource for population genetics and medical sciences. Nucleic Acids Research,
34(suppl 1), D749-D751.

20. Attimonelli, M., Accetturo, M., Santamaria, M., Lascaro, D., Scioscia, G., Pappada, G.,
Russo L., Zanchetta L. &Tommaseo-Ponzetta, M. (2005). HmtDB, a human mitochond-
rial genomic resource based on variability studies supporting population genetics and
biomedical research. BMC Bioinformatics, 6(Suppl 4), S4.

21. Rubino, F., Piredda, R., Calabrese, F.M., Simone, D., Lang, M., Calabrese, C., Petruz-
zella V., Tommaseo-Ponzetta M., Gasparre G.& Attimonelli, M. (2012). Hmt DB, a
genomic resource for mitochondrion-based human variability studies. Nucleic Acids
Research, 40(D1), D1150-D1159.

UULNR UPSNGELAULECh STULULEMR RUQUILEL
CURZULNRC UULU Y

2. Zmhwbhthyjwmt

Zuy-(tniuwlpul hwnduyuwpna,
22 QUU UnjEhnyughl jhiuwpwinippul hhuwnpunnin
e-mail: grant.hovhannisyan@gmail.com

uvonenku

dkpohtt Epint mwubwdjuljutph pupwgpmid dnjkynijughtt qb-
ubwmhluyh Wwénwdubpp pinipugpynd B FuE-h ukldtuw-
Unpuwt dkpnnubph tujut juwnwupbjugnpsdwdp b jEuuwpw-
twlwb quiwqut wnkuwlubph gqhubnhjulut hothnpwlw-
unipjut njuukph wpwg ynnwdwdp: Uwubwynpuyby,
dhwunpnugphnidught YLE-h (Unru@) Jhpupbpu) dhswphy
wnyuubpp, npp Jupbnp towbwlnipnit nith bninighnt, wyn-
wnijjughntt ghkubwnhluluit b puunwpdrjuljutn hknwgninnt-
ptuubpnid, hbwpwynpnipnit Bu phdbnk) puguytl; dbp
wuunltpugnuditpp dudwbwlwulhg dwupngnt uthndwt b phw-
Jtguwt hwupgtph dwuhl, hyybu bwb Jekpuljwiqut; puquu-

H. Hovhannisyan

Phy wnunijjughwiubph dujpugdsuyhtt qghuibnpjujut yuwn-
Unipjniup: Ujpuhuh huuwjwéwduw) dhwungbundwihtt wnbnk-
Ynipniukph yuhywtdwi b 4Epnisnipjut tywwnwlny Jtp-
ohtt mwuphukphtt vntnéyt tu Uh swpp wjujukph puquikp:
Unyl {JEpniswljut witwpynid wdthnth tbpujugus k
wnwyl] hwdwh oquwqnpéynn dhwnnghundwghtt wndjuukph
puquitkph Gjwpugpmipymip’ plngsting npubg wowbjn-
pintuubpp b phpnipniuubkpp, npnup whpwdbown E hwoyh wn-
k] dhuingbundughtt nfyuyubph junwudupdwt hwdwidwt
gnpshpukp unbknsthu:

Zpfupunbp dwpyne dhnnpnigphmdughtt Y06, ndyugibph-
puqu, wynynijjughnt gkubnhlu:

OB30PBA3 JAHHBIX JJII MUTOTEHOMOB YEJIOBEKA
I. Oranecsn™’
1Poccuﬁc1<o-ApMﬂHCKuﬁ YHU8epcumem
2HHcmumym monekynaprou buonoeuu HAH PA
e-mail: grant.hovhannisyan@gmail.com

AHHOTAIMS

Ycnexu MOJIEKyISpHOM TeHETHKH 3a MOCIEeIHIE IBa ACCATHICTHS Xa-
PaKTepU3yIOTCS 3HAYUTENbHBIMYCOBEPIICHCTBOBAHUEMTEXHHKH CEK-
BenupoBanus JJHK u ObICTphIM HaKOIUICHHEM HH(GOPMAIIMK O TCHETH-
4ecKoil BapnabenbHOCTHPA3INYHBIX OMOIOTHYECKUX BUIOB. B acTHO-
cTH, pocT maHHbIX o MuToxoHapuanmsHON JHK (MTAHK), xoTopas
UMeeT BaXHOE 3HAUCHHUE JIJIS IBOJIOIMOHHEIX, TIOMYJISIIMOHHO TeHETH-
YECKHX W CyJeOHO-MEIUIMHCKIX HCCIICOBaHUH, TO3BOIHPACIIH-
PUTH Hallle TOHUMaHHE MPOOJIEMBI PACCENICHHUSI COBPEMEHHOTO YeIIOBe-
Ka W pPEKOHCTPYHUPOBATh MATPIIIMHEHHYI) TEHETHUECKYIO HCTOPHUIO
MHOTOYHCIICHHBIX TOMYJISAIUKA dYenmoBeka. (s XpaHEeHWs W aHan3a
Oonpmoro o0bemMa HHPOPMAITMHOMHATOXOHIPUATEHBIX TEHOMAX YeNo-
BEKa B IOCJICIHUE TOJBI OBUIM CO3aHBI MHOTOYHCIICHHBIEC CIICIHAaIH-
3UpOBaHHBIC 0a3bl JaHHBIX. B nmaHHOW paboTenpencTaBieH 0030p Hau-
Oonee yacToncnonb3yeMbix 6a3 mutoxonapuanbaoi JITHK uwenoBeka c
AQHAJIM30M HXIMPEUMYIIECTB M HEIOCTATKOB, KOTOpPBIE HEOO0XOANMO
YYHTHIBATh MPHU CO3JAaHUU AHAJOTUYHBIX WHCTPYMEHTOBIJISI MEHEXK-
MEHTa MUTOT€HOMHOW MH(pOpMAITUHL.

Kawuesbie cinoBa: muroxonapuansHas JJHK denoseka, 06a3wl naH-
HBIX, TIOMYJISIIIUOHHAS TCHETHKA.

103

104

CBEJEHMUS Ob ABTOPAX

C.A. AMOapuymsH —
JILA. A3HaypsiH —

M.B. beayoexsaH —

I'. I'eBOpKsIH —

A. NaHosiH —

M.I'. MaHyKsH —

JI.B.OBakuMsaH —

M. OBcensiH —

I'.I'. OranecsH —

JL.I'. Ilansan —

T. Coxaksan —

K.M. TageBocsH —

akaneMuk HAH PA, uHoctpannsiii wier PAH

CTapIINiA MTPEToaaBaTeNb Kadeapbl CHCTEMHOTO
nporpaMmmupoBanus PAY

K.(p.-M.H., ipodeccop, TIaBHBIA HAYIHBIN COTPYA-
Huk Uncturyta Mexanuku HAH PA

aCTMPAHT TPEThEro roja o0yyeHus xadenpsl cuc-
TEMHOTI'0 IporpaMmupoBanus PAY

aCIMPAHT TPETHETO rojia 00ydeHus Kadeapsl Tuc-
KpPETHOM MaTeMaTHKH U TEOPETUIECKOi HHPopmMa-
tuku EI'Y

K.(.-M.H., TOTIeHT

K.(h.-M.H., CTapIIuii HAy4YHbIH coTpyAHUK MHCTHTY-
Ta pagnodms3uku u anekrponnkn HAH PA

aCIHMPaHT TPETHETO roja 00ydeHus Kadeaphl cruc-
TEMHOTO MporpamMmmupoBanus PAY

ACIHMPaHT BTOPOTO Toj1a o0yueHus kadeapsr Ono-
WH)XeHepuH 1 OnonHpopmaruku PAY

acIUpaHT MepBOro roja o0yuenus MHcTUTyTa 300-
noruu HAH PA

aCIMpPAaHT TPEThero roga o0yyeHus kadenpsl cuc-
TEMHOTO MporpamMmmupoBanus PAY

ACIHUPaHT TPEThEro roja 00ydeHus Kadeapsl Me-
JUIIMHCKON OMOXUMUU U OnoTexHoyioruu PAY

105

K CBEJEHHIO ABTOPOB

[IpaBuna nyst aBTopoB)ypHana «BectHuk PAY, ®usuko-maTeMaTHYECKUE U ECTECTBEHHBIE
HaYKH».

XKypran mneuataer OpWUTHMHANBHBIE CTATBM 110 PA3IMYHBIM HANpaBICHMSIM (usmko-
MaTEMaTHYECKUX U €CTECTBCHHBIX HaYK.

* K paccMOTpeHHIO IPUHUMAIOTCS CTAThH HAa PYCCKOM, aPMSIHCKOM HUTH QHTTTHHCKOM SI3BIKaX.

» CraTby IOJDKHBI OBITH MPEACTABIICHBI B paclieuaTaHHOM BHE U JJIEKTPOHHOH (opme.

* K matepuanam crarbu npunaraercst Jlorosop ¢ uznarensctBoM PAY, noanucanHbli o1-
HUM (OTBETCTBEHHBIM) aBTOPOM (0(OpMIISIETCS B OHOM 3K3EMILISIPE).

* CtaThs JOJDKHA UMETh HAIIPABJICHUE OT YUPEkKAEHHS, B KOTOPOM BBINOJIHEHA padoTa. Py-
KOIIUCH TMOJIHCHIBACTCSI aBTOPOM (COABTOpaMHM) C yKa3aHHUeM (aMWINU, UMEHH, OTYECTBaA,
JIOMAIITHEro ajpeca, Mecta paboTel, HOMepoB TenedonoB u e-Mail. Heo6xoanmo ykasats, ¢
KEM BECTH IIEPErOBOPHI U MepenucKy. OTKIIOHCHHBIE CTaTbU HE BO3BPAIIAIOTCA.

* B penakumio HampaBisIOTCS Ba SK3EMIULIpa cTaThi, HaOpaHHbIe MpH(TOM 12 MyHKTOB
yepe3 1.5 uHTEepBana Ha OAHON CTOpPOHE JHCTa. PyKomucHbBIe BCTaBKH He NOIycKatoTces. Bee
CTpPaHUIBI JOJKHBI OBITH IPOHYMEPOBAHBI.

Iepen TEKCTOM CTAaThH yKa3bIBAIOTCSL:

— Ha3BaHME CTaTby;

— MHUIMAIEl 1 paMHUIMK aBTOPOB (U1 HHOCTPAHHBIX aBTOPOB HA S3bIKE OPUTHHANA WM Ha
AHTJIUHCKOM SI3BIKE);

— Ha3BaHMeE yupexeHus (0e3 cokpalleHuid 1 abOpeBHaTyp), KOTOPOE HANpaBISET CTATHIO,
ero ajpec (ropoj, CTpaHa);

— e-mail aBTopos.

Janee momemnaeTcsi aHHOTAIUS Ha SI3bIKe OpUrHHasa o6beMoM He Oonee 0.5 MamuHOMHUC-
HOW CTpaHWIBI, KOTOpas He JODKHA AyOIMpOBaTh BBOJHBIM WIIM 3aKJIIOYHATEIBHBIA pasze-
J6I. AHHOTAIMA HE J0JDKHA COJIEPKATh JIUTEpaTypHBIX CCHIIOK U ab0peBuaryp. B xonre an-
HOTAIlMU yKa3bIBAIOTCs KiItoueBble cioBa (keywords). B koHIe cTaTh MOMEIIATCS aHHO-
TalMU HA JIBYX U3 OCTABIINXCS S3BIKAX

* UznoxxeHne Marepuaina JOIKHO OBITH SICHBIM M KpPaTKUM, 0e3 (opMyIT U BBIKJIIOK ITPOMe-
XKYTOYHOTO XapaKTepa M TPOMO3JIKUX MaTEMAaTHIECKUX BBIPAKEHHUM.

. PI/ICyHKI/I, IIOMCIHICHHBIC B TCKTC CTATbH, JOJI)KHBI OBITh J0CTATOYHO APKUMHU U KOHTPACT-
HBIMH, YTOOBI COXPAHMIOCH UX Ka4eCTBO NMPH THPAKUPOBAHUH *KypHaia. IlogpucyHOUHBII
TEKCT 00s13aTeNIeH U IOJDKEH ObITh HaOpaH KypCHBOM.

» ®opmyIInl clienyeT HabupaTs KypCHBOM, KPYITHO, CBOOOTHO M 9eTKO (Habop MaTeMaTHdec-
KX (opMysT peKOMEHIyeTCs BBIMOIHUTH MpH moMolnn cuctemsr Mathtype). Hymepaitus
(bopMyn 1oKHA OBITH CKBO3HOH 110 BCEH CTaThe (HE 10 pasJienam).

— XXupHbIM mprdTOM HAOMPAIOTCS TOJIBKO BEKTOPHBIE BEIMYMHBI (CTPEJIKA CBEPXY HE HY)KHA).
— Xumndeckue (GopMyJsIbl, CHUMBOJIBI, COKpAIIEHUS, €IMHUIBI U3MEPEHUsT HAOMParoTCs Mps-
MBIM IIPUPTOM.

* Tabnuib! JOIDKHEI OBITH BKIIOYEHBI B 00IIyI0 HyMepaluio Tekcta. O0s3aTeIbHO HAIn4ne
3aroJIOBKOB M €JMHUI] H3MEPEHHs BeJIMUMH. Bee cTonOIs! TabIuIb! TOIKHBL OBITH O3ariaB-
JICHBI.

* Comcok nuTepaTypsl JOJDKeH OBITh HaOpaH Ha SA3bIKEe IUTHPOBAHHON JIMTEpaTyphl H
0(hOpMIIEH CIEAYIONIIM 00pa3oM:

— JIsI KHUI' — HHUIIUAJIbI U (paMI/IJ'II/II/I 6cex aBTOPOB, HA3BAHUC KHUTH, U31aTCIILCTBO, MECTO
W3JaHUS, TOJ U3JaHUS B KPYTIIBIX CKOOKAX, TOM;

— 7S IEPUOANYECKIX M3MaHNH — HHUIHAIE! ¥ (paMIInK BCEX aBTOPOB, Ha3BaHME XKypHAJa,
TOM, — HOMEpa MEePBO#i U MOCIEAHEH CTPAHHUI] CTAThH, TOJ] U3IaHKSI B KPYIJIBIX CKOOKAX.

COOEPKAHHUE

MartemaTtuka u uHpOpMATHKA

AmOapuymsH C.A., Beay0Oexsn M.B. K 3agaue ninanapHbIx
KOJICOAHMH TITTACTHHKHvsvevestesteaseaseessesst st sseasesseessesee s esnesneanessesseeseessesnesnennesnesneneis 5

Danoyan D., Sokhakyan T. A Generic Framework

for Secure COMPULALIONSccvvieiieieieie st sneeneas 14
Gevorgyan G., Manukyan M. Effective Algorithms

10 SUPPOIt Grit FIlES....c.eeieieci e 22
Hovsepyan M. Review of searchable encryption algorithms.............ccoceoevvniincne. 39

Mkrtchyan A. Stochastic discrete event simulation model
for estimating product development timec.cccvvveieeie i 54

AsnaypsH JI.A. HccnenoBanue BO3MOKHOCTH IPUMEHEHUS

MaTEeMaTHYECKUX METO/I0B aHAJIN3a MY3bIKATBHBIX MPOU3BEHACHHUMovvvveviiiiiaeins 74
Buosiorus
TaneBocsin K. INK/AP-1 curHanbHbIi MyTh TPH HIIEMHYECKOM HHCYIBTE 85

Hansan JL.I'. ®opmMupoBaHue CHHAHTPOIIU3MA B HEKOTOPBIX

CEBEPHBIX pallOHaX APMEHUHU Ha MPUMEPE MPEICTABUTEICH ...vveveveeririeririeririenineennn 91
Hovhannisyan H. Databases for complete human mitogenomes: a review............. 95
CBEIEHUS 00 ABTOPAXcc.utiiiuiieiiiieniteeiitieateesitteateessbeesbeessteesabeesbeesbeessbeeabeessbeeaneesneas 104

K cBeeHu1o aBTopoB

Anpec Penakuyn HayqHBIX H37aHui Poccuiicko- ApMSHCKOTO
(CnaBgHCKOT0) yHUBEPCUTETA:
0051, e. Epesan, yn. Ogcena Omuna, 123
men/gaxc: (+374 10) 27-70-52, (enymp. 42-02)
e-mail: marvolskraya@gmail.com

3aka3 Ne 1
IMopmucano x neuatu 19.12.2015r.
®opwmar 70x100"/;6. Bymara odcernas Nel.
O0wem 6.7 yei. . Tupax 100 9k3.

